3A =32+33+34+...+3100+3101
khi 2A = 3101 - 3
suy ra: A = (3101 - 3):2
b, A = 31+32+33+...+3100
A = (31+32)+(33+34)+...+(399+3100)
A = 3(1+3)+33(1+3)+...+399(1+3)
A= 12(1+32+33+...+398) nên A chia hết cho 4 và 12
c, mk chưa làm được
Ta có A = 3 + 32 + 33 + ... + 399 + 3100
=> 3A = 32 + 33 + 34 + ... + 3100 + 3101
Khi đó 3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)
=> 2A = 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
b) Ta có A = 3 + 32 + 33 + 34 +... + 399 + 3100
= (3 + 32) + 32(3 + 32) + ... + 398(3 + 32)
= 12 + 32.12 + ... + 398.12
= 12(1 + 32 + ... + 398) \(⋮\)12
Lại có A = 12(1 + 32 + ... + 398) = 3.4.(1 + 32 + ... + 398) \(⋮\)4
c) Sửa đề A không chia hết cho 13
Ta có A = 3 + 32 + 33 + 34 + 35 + ... + 398 + 399 + 3100
=> A + 1 = 1 + 3 + 32 + 33 + 34 + 35 + ... + 398 + 399 + 3100
=> A + 1 = (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 398(1 + 3 + 32)
=> A + 1 = 13 + 33.13 + 33.13 + ... + 13.398
=> A + 1 = 13(1 + 33 + ... + 398)
=> A = 13(1 + 33 + ... + 398) - 1
=> A không chia hết cho 13