Ta có: 3A = 3 + 32 + 33 + ..... + 32001
3A - A = 32001 - 1
2A = 32001 - 1
Vậy n = 2001
\(A\cdot\left(3-1\right)=\left(3-1\right)\left(3^{2000}+3^{1999}+...+3^2+3+1\right).\)
\(2A=3^{2001}+3^{2000}+3^{1999}+...+3^2+3-\left(3^{2000}+3^{1999}+...+3+1\right)=3^{2001}-1\)
Theo để bài thì \(2A=3^n-1\). Vậy \(n=2001.\)
Ta có: 3A = 3 + 32 + 33 + ..... + 32001
3A - A = 32001 - 1
2A = 32001 - 1
Vậy n = 2001
Đáp số : n = 2001
Ta có :3A=3.(1+3+3^2+3^3+.....+3^2000)
3A=3+3^2+3^3+......+3^2001
Suy ra:3A-A=3+3^2+3^3+....+3^2001-1-3-3^2-3^3-....-3^2000
2A=3^20001-1
Ma` 2A=3^n-1
Suy ra :n=2001