Ta có: a > 0, b > 0⇒ a.b > 0.b⇒ ab > 0⇒ 1/ab > 0
a > b⇒ a. 1/ab > b. 1/ab⇒ 1/b > 1/a⇒ 1/a < 1/b
Ta có: a > 0, b > 0⇒ a.b > 0.b⇒ ab > 0⇒ 1/ab > 0
a > b⇒ a. 1/ab > b. 1/ab⇒ 1/b > 1/a⇒ 1/a < 1/b
a) Cho m > 2, chứng minh m 2 − 2 m > 0 .
Cho a < 0; b < 0 và a > b. Chứng minh 1 a < 1 b .
Suy ra kết quả tương tự a ≥ b > 0 .
Cho a > 0 và b > 0, chứng tỏ rằng: a + b 1 a + 1 b ≥ 4
Chứng minh đẳng thức:
a) a 2 − 3 a a 2 + 9 − 6 a 2 27 − 9 a + 3 a 2 − a 3 . 1 − 2 a − 3 a 2 = a + 1 a với a ≠ 0 ; 3 ;
b) 2 5 b − 2 b + 1 . b + 1 5 b − 3 5 b − 3 5 : b − 1 b = 6 b 5 ( b − 1 ) với b ≠ 0 ; ± 1 .
Cho 1 b + c + 1 c + a + 1 a + b ≠ 0 , nghiệm của phương trình x - a b + c + x - b a + c + x - c a + b = 3 là:
A. x = a + b + c
B. x = a – b – c
C. x = a + b – c
D. x = -(a + b + c)
Cho a > 0 và b > 0. Chứng minh rằng: 1 a + 1 b a + b ≥ 4
Cho (a2−bc)(b−abc)=(b2−ac)(a−abc);abc≠0;a≠b(a2−bc)(b−abc)=(b2−ac)(a−abc);abc≠0;a≠b
CMR:1a+1b+1c=a+b+c
cho a,b,c là các số dương , chứng tỏ:
b)(a+b+c)(1a+1b+1c)≥9
có cách nào làm mà không dunhg bđt cô si ko? mình chưa học tới đó
Cho a > 0, b > 0, nếu a < b, hãy chứng tỏ: a 2 < b 2 và a 3 < b 3
Cho a > 0, b > 0, nếu a < b, hãy chứng tỏ: a 2 < ab và ab < b 2