cho 3 vector \(\overrightarrow{a}\left(1;2;2\right)\), \(\overrightarrow{b}\left(2;0;-1\right)\), \(\overrightarrow{c}\left(5;1;3\right)\)
1. \(2\overrightarrow{b}\)
2. \(\overrightarrow{a}+\overrightarrow{b}\)
3. \(\overrightarrow{a}-\overrightarrow{b}\)
4. \(2\overrightarrow{b}+\overrightarrow{c}\)
5. \(3\overrightarrow{b}-\overrightarrow{c}\)
1:
\(\overrightarrow{b}=\left(2;0;-1\right)\)
\(\Leftrightarrow2\cdot\overrightarrow{b}=\left(4;0;-2\right)\)
2: \(\overrightarrow{a}=\left(1;2;2\right);\overrightarrow{b}=\left(2;0;-1\right)\)
=>\(\overrightarrow{a}+\overrightarrow{b}=\left(3;2;1\right)\)
3: \(\overrightarrow{a}=\left(1;2;2\right);\overrightarrow{b}=\left(2;0;-1\right)\)
=>\(\overrightarrow{a}-\overrightarrow{b}=\left(-1;2;3\right)\)
4: \(\overrightarrow{b}=\left(2;0;-1\right);\overrightarrow{c}=\left(5;1;3\right)\)
=>\(2\overrightarrow{b}+\overrightarrow{c}=\left(2\cdot2+5;2\cdot0+1;2\cdot\left(-1\right)+3\right)\)
=>\(2\overrightarrow{b}+\overrightarrow{c}=\left(9;1;1\right)\)
5: \(\overrightarrow{b}=\left(2;0;-1\right);\overrightarrow{c}=\left(5;1;3\right)\)
\(3\overrightarrow{b}-\overrightarrow{c}=\left(3\cdot2-5;3\cdot0-1;3\cdot\left(-1\right)-3\right)\)
=>\(3\overrightarrow{b}-\overrightarrow{c}=\left(1;-1;-6\right)\)