Không mất tính giả sử \(a\ge b\ge c\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{b}{bc+1}+\frac{c}{bc+1}=\frac{b+c}{bc+1}\left(1\right)\)
Mà \(0\le b,c\le1\Rightarrow\left(1-b\right)\left(1-c\right)\ge0\Rightarrow bc+1\ge b+c\Rightarrow\frac{b+c}{bc+1}\le1\left(2\right)\)
Do\(0\le a,b,c\le1\Rightarrow a\le1\le1+bc\Rightarrow\frac{a}{bc+1}\le1\left(3\right)\)
Từ (1),(2),(3) rồi cộng lại ta thu được đpcm