a:
ĐKXĐ của B là x>=0; x<>9
Thay x=36 vào B, ta được:
\(B=\frac{\sqrt{36}}{\sqrt{36}-3}=\frac{6}{6-3}=\frac63=2\)
b: \(B<\frac12\)
=>\(\frac{\sqrt{x}}{\sqrt{x}-3}<\frac12\)
=>\(\frac{\sqrt{x}}{\sqrt{x}-3}-\frac12<0\)
=>\(\frac{2\sqrt{x}-\sqrt{x}+3}{2\cdot\left(\sqrt{x}-3\right)}<0\)
=>\(\frac{\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}<0\)
=>\(2\left(\sqrt{x}-3\right)<0\)
=>\(\sqrt{x}-3<0\)
=>\(\sqrt{x}<3\)
=>0<=x<9
c: \(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\left(\sqrt{x}+2\right)=\frac{\sqrt{x}+2}{\sqrt{x}}\)
d: \(P=A\cdot B=\frac{\sqrt{x}+2}{\sqrt{x}}\cdot\frac{\sqrt{x}}{\sqrt{x}-3}=\frac{\sqrt{x}+2}{\sqrt{x}-3}\)
Để P là số nguyên thì \(\sqrt{x}+2\) ⋮\(\sqrt{x}-3\)
=>\(\sqrt{x}-3+5\) ⋮\(\sqrt{x}-3\)
=>5⋮\(\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\lbrace1;-1;5;-5\right\rbrace\)
=>\(\sqrt{x}\in\left\lbrace4;2;8;-2\right\rbrace\)
=>\(\sqrt{x}\in\left\lbrace2;4;8\right\rbrace\)
=>x∈{4;16;64}