\(a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Rightarrow a^{101}-a^{100}+b^{101}-b^{100}=0\)
\(\Rightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)
Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)>0\) không đúng với (1)
Nếu a và b cùng nhỏ hơn 1 thì: a-1 và b-1 đều âm nên:\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)< 0\) không đúng với (1)
Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1Không mất tính tổng quát, giả sử \(a\ge1;b\le1\)
Ta có:
\(a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\)
\(\Rightarrow a^{100}\left(a-1\right)=b^{100}\left(b-1\right)\left(2\right)\)
Lại có:
\(a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow a^{102}-a^{101}+b^{102}-b^{101}=0\)
\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{100}\left(a-1\right)+b\cdot b^{100}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot b^{100}\left(b-1\right)=0\)
\(\Rightarrow a\cdot a^{100}\left(a-1\right)-b\cdot a^{100}\left(a-1\right)=0\)(theo (2))
\(\Rightarrow a^{100}\left(a-1\right)\left(a-b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-1=0\\a-b=0\end{cases}}\)(do a>0)
\(\Rightarrow a=b=1\)\(\Rightarrow P=1^{2007}+1^{2007}=2\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>a≥1;b≤1
Ta có:
a100(a−1)+b100(b−1)=0
⇒a100(a−1)=b100(b−1)(2)
Lại có:
a101+b101=a102+b102
⇒a102−a101+b102−b101=0
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇒a100(a−1)+b100(b−1)=0(1)
Nếu a và b cùng lớn hơn 1 thì: a-1 và b-1 đều dương nên:a100(a−1)+b100(b−1)<0 không đúng với (1)
Nếu a và b có 1 số lớn hơn hoặc bằng 1 và 1 số nhỏ hơn hoặc bằng 1Không mất tính tổng quát, giả sử
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇒a100(a−1)=b100(b−1)(2)
Lại có:
a101+b101=a102+b102
⇒a102−a101+b102−b101=0
<br class="Apple-interchange-newline"><div id="inner-editor"></div>⇒a100(a−1)=b