CÂU 13: PT BẬC HAI – HỆ THỨC VIET Cho phương trình bậc hai : x ^ 2 - 2(m - 2) * x + m ^ 2 - 3 = 0 với m là tham số. 1) Tìm m để phương trình có hai nghiệm phân biệt x_{1}; x_{2} . 2) Tìm m để phương trình có hai nghiệm phân biệt x_{1} / x_{2} thỏa: x_{1} ^ 2 + x_{2} ^ 2 = 22 3) Tìm m để phương trình có hai nghiệm X_{1} ; X_{2} thỏa: A = x_{1} ^ 2 + x_{2} ^ 2 + 2021 đạt giá trị nhỏ nhất và tim giá trị nhỏ nhất đó
1:
Δ=(2m-4)^2-4(m^2-3)
=4m^2-16m+16-4m^2+12=-16m+28
Để PT có hai nghiệm phân biệt thì -16m+28>0
=>-16m>-28
=>m<7/4
2: x1^2+x2^2=22
=>(x1+x2)^2-2x1x2=22
=>(2m-4)^2-2(m^2-3)=22
=>4m^2-16m+16-2m^2+6=22
=>2m^2-16m+22=22
=>2m^2-16m=0
=>m=0(nhận) hoặc m=8(loại)
3: A=x1^2+x2^2+2021
=2m^2-16m+2043
=2(m^2-8m+16)+2011
=2(m-4)^2+2011>=2011
Dấu = xảy ra khi m=4