\(\left(2x+1\right)^{10}=49^5\)
\(\left(2x+1\right)^{10}=\left(7^2\right)^5\)
\(\left(2x+1\right)^{10}=7^{10}\)
\(\left(2x+1\right)^{10}=7^{10}\) hoặc \(\left(2x+1\right)^{10}=\left(-7\right)^{10}\)
\(2x+1=7\) hoặc \(2x+1=-7\)
*) \(2x+1=7\)
\(2x=6\)
\(x=3\)
*) \(2x+1=-7\)
\(2x=-8\)
\(x=-4\)
Vậy \(x=-4;x=3\)
(2x +1)10 = 495
(2x+1)10 = (72)5
(2x +1)10 = 710
\(\left[{}\begin{matrix}2x+1=7\\2x+1=-7\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=6\\2x=-8\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)