a) \(\sqrt{\left|x-1\right|-3}\)
Với \(x\ge1\) thì
\(\sqrt{x-1-3}=\sqrt{x-4}\) được xác định khi:
\(x\ge4\)
Với \(x< 1\) thì
\(\sqrt{-\left(x-1\right)-3}=\sqrt{-x+1-3}=\sqrt{-x-2}\) được xác đinh khi:
\(x\le-2\)
\(a,\sqrt{\left|x-1\right|-3}\) xác định \(\Leftrightarrow\left|x-1\right|-3\ge0\Leftrightarrow\left|x-1\right|\ge3\)
\(TH_1:x\ge1\\ x-1\ge3\Leftrightarrow x\ge4\left(tm\right)\\ TH_2:x< 1\\ x-1\ge-3\\ \Leftrightarrow x\ge-2\left(tm\right)\)
Vậy căn thức trên xác định \(\Leftrightarrow x\ge4\)
\(b,\sqrt{x-2\sqrt{x-1}}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}\le\dfrac{x}{2}\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1\le\dfrac{x^2}{4}\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x-4-x^2\le0\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-\left(x^2-4x+4\right)\le0\\x\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2\ge0\left(LD\right)\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)
Vậy căn thức trên xác định \(\Leftrightarrow x\ge1\)
\(c,\dfrac{1}{\sqrt{9-12x+4x^2}}=\dfrac{1}{\sqrt{\left(3-2x\right)^2}}=\dfrac{1}{3-2x}\) xác định \(\Leftrightarrow3-2x\ne0\Leftrightarrow x\ne\dfrac{3}{2}\)
Vậy căn thức trên xác định \(\Leftrightarrow x\ne\dfrac{3}{2}\)
c) \(\dfrac{1}{\sqrt{9-12x+4x^2}}=\dfrac{1}{\sqrt{\left(3-2x\right)^2}}=\dfrac{1}{3-2x}\)
Xác định khi:
\(3-2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{3}{2}\)