Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Văn Quốc Thái

Biểu thức sau xác định với giá trị của x

a) \(\sqrt{\left|x-1\right|-3}\)

b) \(\sqrt{x-2\sqrt{x-1}}\)

c) \(\dfrac{1}{\sqrt{9-12x+4x^2}}\)

HT.Phong (9A5)
15 tháng 8 2023 lúc 9:05

a) \(\sqrt{\left|x-1\right|-3}\) 

Với \(x\ge1\) thì

\(\sqrt{x-1-3}=\sqrt{x-4}\) được xác định khi:
\(x\ge4\)

Với \(x< 1\) thì

\(\sqrt{-\left(x-1\right)-3}=\sqrt{-x+1-3}=\sqrt{-x-2}\) được xác đinh khi:

\(x\le-2\)

YangSu
15 tháng 8 2023 lúc 9:16

\(a,\sqrt{\left|x-1\right|-3}\) xác định \(\Leftrightarrow\left|x-1\right|-3\ge0\Leftrightarrow\left|x-1\right|\ge3\)

\(TH_1:x\ge1\\ x-1\ge3\Leftrightarrow x\ge4\left(tm\right)\\ TH_2:x< 1\\ x-1\ge-3\\ \Leftrightarrow x\ge-2\left(tm\right)\)

Vậy căn thức trên xác định \(\Leftrightarrow x\ge4\)

\(b,\sqrt{x-2\sqrt{x-1}}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x-2\sqrt{x-1}\ge0\\x-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}\le\dfrac{x}{2}\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-1\le\dfrac{x^2}{4}\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x-4-x^2\le0\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-\left(x^2-4x+4\right)\le0\\x\ge1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2\ge0\left(LD\right)\\x\ge1\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)

Vậy căn thức trên xác định \(\Leftrightarrow x\ge1\)

\(c,\dfrac{1}{\sqrt{9-12x+4x^2}}=\dfrac{1}{\sqrt{\left(3-2x\right)^2}}=\dfrac{1}{3-2x}\) xác định \(\Leftrightarrow3-2x\ne0\Leftrightarrow x\ne\dfrac{3}{2}\)

Vậy căn thức trên xác định \(\Leftrightarrow x\ne\dfrac{3}{2}\)

 

 

HT.Phong (9A5)
15 tháng 8 2023 lúc 9:07

c) \(\dfrac{1}{\sqrt{9-12x+4x^2}}=\dfrac{1}{\sqrt{\left(3-2x\right)^2}}=\dfrac{1}{3-2x}\) 

Xác định khi:

\(3-2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{3}{2}\)


Các câu hỏi tương tự
huy tạ
Xem chi tiết
tuấn anh lê
Xem chi tiết
Tuấn Tú
Xem chi tiết
lê khôi nguyên
Xem chi tiết
Nguyễn Ngọc k10
Xem chi tiết
Anh hdpt
Xem chi tiết
Tran Phut
Xem chi tiết
꧁WღX༺
Xem chi tiết
Duong Thi Nhuong TH Hoa...
Xem chi tiết