\(x^3-y^3-6xy\)=\(x^3-3x^2y+3xy^2-y^3-6xy+3x^2y-3xy^2\)=\(\left(x-y\right)^3+3xy\left(-2+x-y\right)\)
Thay x-y=2 vào biểu thức.
=>\(2^3+3xy\left(-2+2\right)\)=\(8+0=8\)
x3 - y3 - 6xy = \(\left(x-y\right)\left(x^2+xy+y^2\right)-6xy\)
thay x - y = 2 vào
\(2\left(x^2+xy+y^2\right)-6xy=2x^2+2xy+2y^2-6xy=2x^2-4xy+2y^2=2\left(x^2-2xy+y^2\right)=2\left(x-y\right)^2\)thay x- y = 2
2 . 2^2 = 2 . 4 = 8