\(sin\alpha+cos\alpha=\sqrt{2}\)
=>\(\left(sin\alpha+cos\alpha\right)^2=\left(\sqrt{2}\right)^2=2\)
=>\(1+2\cdot sin\alpha\cdot cos\alpha=2\)
=>\(2\cdot sin\alpha\cdot cos\alpha=1\)
=>\(sin\alpha\cdot cos\alpha=\dfrac{1}{2}\)
\(sin^4\alpha+cos^4\alpha=\left(sin^2\alpha+cos^2\alpha\right)^2-2\cdot sin^2\alpha\cdot cos^2\alpha\)
\(=1-2\cdot\left(sin\alpha\cdot cos\alpha\right)^2\)
\(=1-2\cdot\left(\dfrac{1}{2}\right)^2=1-\dfrac{2}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)