Biết rằng tập hợp tất cả các giá trị của tham số m để hàm số f x = x 2 + 2 x + 2 m - 1 x - m đồng biến trên nửa khoảng [ 2 ; + ∞ ) và S = ( - ∞ ; a b ] , trong đó a, b là các số nguyên dương và a b là phân số tối giản. Giá trị của 3 a - b bằng
A. 11
B. 23
C. 7
D. 19
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Biết tập hợp tất cả các giá trị của tham số m để bất phương trình 4 sin 2 x + 5 c os 2 x ≤ m . 7 c os 2 x có nghiệm là m ∈ a b ; + ∞ với a, b là các số nguyên dương và a b tối giản. Khi đó tổng bằng:
A. 13
B. 15
C. 9
D. 11
Biết tập hợp các giá trị của tham số m để bất phương trình 4 sin 2 x + 5 cos 2 x ≤ m . 7 cos 2 x có nghiệm là [ a b ; + ∞ ) với a, b là các số nguyên dương và a b là phân số tối giản. Khi đó giá trị S = a + b bằng:
A. S = 13
B. S = 15
C. S = 9
D. S = 11
Biết rằng tập hợp tất cả các giá trị thực của tham số m để hàm số y = 1 3 x 3 − m − 1 x 2 − m − 3 x + 2017 m đồng biến trên các khoảng ( − 3 ; − 1 ) và ( 0 ; 3 ) là đoạn T = a ; b . Tính a 2 + b 2
A. a 2 + b 2 = 10
B. a 2 + b 2 = 13
C. a 2 + b 2 = 8
D. a 2 + b 2 = 5
Biết rằng S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = x 3 - 3(m-1) x 2 + 3m(m+2)x nghịch biến trên đoạn [0;1]. Tính tổng các phần tử của S?
A. S = 0.
B. S = 1.
C. S = -2.
D. S = -1.
Gọi S là tập hợp tất cả các giá trị nguyên dương và nhỏ hơn 2018 của tham số m để hàm số y = x - 2 x - m nghịch biến trên khoảng (1;9). Tính số phần tử của tập hợp S.
A. 2015
B. 2016
C. 2017
D. 2014
Cho hàm số y = f x = x 3 - 2 m - 1 x 2 + 2 - m x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a + b + c
A. a + b + c = 11
B. a + b + c = 8
C. a + b + c = 10
D. a + b + c = 5
Gọi S là tập tất cả các giá trị thực của tham số m để hàm số y = x 2 + 1 - m x đồng biến trên nửa khoảng [ 3 ; + ∞ ) . Biết rằng S có dạng ( - ∞ ; a ] ∈ ℝ . Trên a 2 ; 2018 a 2 có tất cả bao nhiêu giá trị nguyên?
A. 1816
B. 1815
C. 1914
D. 1913