Cho \(\left(x+\sqrt{x^2+\sqrt{2021}}\right)\left(y+\sqrt{y^2+\sqrt{2021}}\right)=\sqrt{2021}.\) Tính giá trị của \(A=x+y.\)
Cho \(\left(x+\sqrt{x^2+2021}\right)\left(y+\sqrt{y^2+2021}\right)=2021\)
Tính \(x+y\)
Tìm giá trị nhỏ nhất của biểu thức :
\(P\left(x,y\right)=\sqrt{\left(x+1\right)^2+\left(y-1\right)^2}+\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}+\sqrt{\left(x+2\right)^2+\left(y+2\right)^2}\)
Cho x,y là hai số thực thỏa mãn xy+\(\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\) =1
Tính giá trị của biểu thức M=(x+\(\sqrt{1+y^2}\))(y+\(\sqrt{1+x^2}\))
a) Cho 0<x<y thỏa mãn \(2x^2+2y^2=5xy\). Tính E=\(\dfrac{x^2+y^2}{x^2-y^2}\)
b) Cho x=\(\dfrac{1}{\sqrt[3]{3-2\sqrt{2}}}\)+ \(\sqrt[3]{3-2\sqrt{2}}\). Tính giá trị biểu thức
P=\(\left(2x^3-6x+2008\right)^{2021}\)
Cho các số thực x, y thỏa mãn: \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Tính giá trị của biểu thức: \(A=\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\)
Cho x,y,z > 0 và xy + yz + zx = 1. Tính giá trị của biểu thức:
\(P=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
cho x,y,z thỏa mãn xy+yz+xz=1. Tính giá trị của biểu thức:
\(A=x.\sqrt{\frac{\left(1+y^2\right).\left(1+z^2\right)}{1+x^2}}+y.\sqrt{\frac{\left(1+z^2\right).\left(1+x^2\right)}{1+y^2}}+z.\sqrt{\frac{\left(1+x^2\right).\left(1+y^2\right)}{1+z^2}}\)
\(\frac{X}{\left(\sqrt{X}+\sqrt{Y}\right)\left(1-\sqrt{Y}\right)}-\frac{Y}{\left(\sqrt{X}+\sqrt{Y}\right)\left(\sqrt{X}+1\right)}-\frac{XY}{\left(\sqrt{X}+1\right)\left(1-\sqrt{Y}\right)}\)
Rút gon biểu thức trên
Tìm giá trị nguyên x; y thỏa mãn P=2
tìm giá trị lớn nhất của biểu thức
\(M=\dfrac{\left|x-y\right|+\left|x+y\right|+\left|xy-1\right|+\left|xy+1\right|}{\sqrt{\left(x^2+1\right)\left(y^2+1\right)}}\)