Gọi a, b là hai giá trị thực để hàm số f x = 2 x 2 + 6 3 − a x x 2 − 1 , x ≠ 1 a + b x + 2 , x = 1 liên tục tại x = 1. Biết rằng b = m n ; m ∈ ℤ , n ∈ ℕ và m n là phân số tối giản. Tính P = m + 2n
A. P = -17
B. P = =-5
C. P = -23
D. P = -13
Biết rằng 9 x + 9 − x = 23. Khi đó biểu thức A = 5 + 3 x + 3 − x 1 − 3 x − 3 − x = a b với a b là phân số tối giản và a , b ∈ ℤ . Tích a.b có giá trị bằng
A. 10
B. 8
C. -8
D. -10
Cho hàm số f x = 3 x − 4 + x + 1 .2 7 − x − 6 x + 3 . Giả sử m 0 = a b ( a , b ∈ ℤ , a b là phân số tối giản) là giá trị nhỏ nhất của tham số thực m sao cho phương trình f 7 − 4 6 x − 9 x 2 + 2 m − 1 = 0 có số nghiệm nhiều nhất. Tính giá trị của biểu thức P = a + b 2
A. P = -1
B. P = 7
C. P = 11
D. P = 9
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Cho 9 x + 9 − x = 23. Khi đó biểu thức A = 5 + 3 x + 3 − x 1 − 3 x − 3 − x = a b với a b tối giản và a , b ∈ ℤ . Tích a . b có giá trị bằng:
A. 8
B. 10
C. -8
D. -10
Tập nghiệm của phương trình - 9 sin x + 6 cos x - 3 sin 2 x + cos 2 x = - 10 là: x = aπ b + k 2 π k ∈ ℤ tính giá trị của a 2 - b : (biết a, b tối giản)
A. 3
B. - 2
C.4
D. - 1
Cho 2 số thực x;y thỏa mãn x , y ≥ 1 và log 3 x + 1 y + 1 y + 1 = 9 − x − 1 y + 1 Biết giá trị nhỏ nhất của biểu thức P = x 3 + y 3 − 57 x + y là một số thực có dạng a + b 7 , a , b ∈ ℤ . Tính giá trị của a+b
A. -28
B. -29
C. -30
D. -31
Khi tính giới hạn lim x → - ∞ x 2 - x + 2 x 3 - 4 x ta được kết quả là một phân số tối giản a b , a ∈ ℤ , b ∈ ℤ , b ≠ 0 . Tính a + b?
A. a + b = 5
B. a + b = 7
C. a + b = -1
D. a + b = -3
∫ 4 6 x 2 + 4 x + 1 x 2 + x Biết rằng với a, b, c là các số nguyên dương, a b là phân số tối giản. Tính giá trị của biểu thức S = a + b + c
A. S = 199
B. S = 198
C. S = 395
D. S = 396