Cho hàm số f (x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) và f ' ( x ) = 1 x 2 + x , f ( 1 ) = ln 1 2 . Biết ∫ 1 2 ( x 2 + 1 ) f ( x ) d x = a ln 3 + b ln 2 + c với a,b,c là các số hữu tỉ. Giá trị biểu thức a+b+c bằng
A. 27 2
B. 1 6
C. 7 6
D. - 3 2
Biết giá trị của tích phân ∫ 0 π 2 ln ( ( 1 + sin x ) 1 + c o s x 1 + c o s x ) d x = a ln 2 + b ; a, b là các số hữu tỉ. Khi đó a 3 + b 2 bằng là
A. -5
B. 13
C. 9
D. -7
Biết ∫ π 4 π 3 1 c o s 4 x + sin x cos 3 x d x = a - b + c ln 2 + d ln ( 1 + 3 ) với a,b,c,d là các số hữu tỉ. Giá trị của abcd bằng
A. 0
B. −36
C. −24
D. −6
Cho hàm số y = x + b a x - 2 a b ≠ - 2 . Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A(1;-2) song song với đường thẳng d : 3 x + y - 4 = 0 . Khi đó giá trị của a - 3b bằng
A. -2
B. 4
C. -1
D. 5
Cho hàm số y = x + b a x - 2 a b ≠ - 2 . Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A(1;-2) song song với đường thẳng d : 3 x + y - 4 = 0 . Khi đó giá trị của a - 3 b bằng
A. -2
B. 4
C. -1
D. 5
Biết I = ∫ 1 2 d x x + 2 x + x x + 2 = a 3 + b 2 + c với a,b,c là các số hữu tỉ. Giá trị T = a + b + c bằng bao nhiêu?
A. -1
B. 5
C. 1
D. 2
Cho hàm số f(x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) thỏa mãn f ' ( x ) = 1 x 2 + x , f ( 1 ) = ln 1 2 . Cho ∫ 1 2 ( x 2 + 1 ) 2 f ( x ) d x =a ln3+b ln2+c, với a,b,c là các số hữu tỷ. Giá trị biểu thức a+b+c bằng
A. 27 20
B. 23 20
C. - 27 20
D. - 23 20
Cho đồ thị hàm số y=1 + cosx (C) và y=1 + cos(x-α) (C') trên đoạn [ 0 ; π ] với 0 < α < π 2 . Tính α biết rằng diện tích hình phẳng giới hạn bởi (C) và (C') và đường x = 0 thì bằng diện tích hình phẳng giới hạn với(C') và đường y = 1, x = π . Ta được kết quả nào sau đây
A. α = π 6
B. α = π 4
C. α = π 3
D. α = π 12
Trong không gian với hệ toạ độ Oxyz, xét ba điểm A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c là các số thực thay đổi thoả mãn 1 a - 2 b + 2 c = 1 . Biết rằng mặt cầu (S): ( x - 2 ) 2 + y 2 + ( z - 4 ) 2 = 25 cắt mặt phẳng (ABC) theo giao tuyến là một đường tròn có bán kính bằng 4. Giá trị của biểu thức a+b+c bằng
A. 5.
B. 1.
C. 2.
D. 4.