Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kyosueke_VN

Bài toán 1. So sánh:

20

2009

10

20092009

.

Bài toán 2. Tính tỉ số

B

A

, biết:

2008

1

2007

2

...

3

2006

2

2007

1

2008

2009

1

2008

1

2007

1

...

4

1

3

1

2

1





B

A

Bài toán 3. Cho x, y, z, t

N

*

.

Chứng minh rằng: M =

tzx

t

tzy

z

tyx

y

zyx

x









có giá trị không phải là số

tự nhiên.

Bài toán 4. Tìm x; y

Z biết:

a. 25 –

2

y

= 8( x – 2009)

b.

3

x

y

=

x

3

y

+ 1997

c. x + y + 9 = xy – 7.

Bài toán 5. Tìm x biết

a.

1632)32(2)32(5  xxx

b.

426

22

 xxx

.

Bài toán 6. Chứng minh rằng:

22222222

10.9

19

...

4.3

7

3.2

5

2.1

3



< 1

Bài toán 7. Cho n số x

1

, x

2

, ..., x

n

mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu

x

1

.x

2

+ x

2

.x

3

+ ...+ x

n

.x

1

= 0 thì n chia hết cho 4.

Bài toán 8. Chứng minh rằng:

S =

20042002424642

2

1

2

1

...

2

1

2

1

...

2

1

2

1

2

1



 nn

< 0,2

Bài toán 9. Tính giá trị của biểu thức A =

n

x

+

n

x

1

giả sử

01

2

 xx

.

Bài toán 10. Tìm max của biểu thức:

1

43

2

x

x

.

Bài toán 11. Cho x, y, z là các số dương. Chứng minh rằng

D =

4

3

222





 yxz

z

xzy

y

zyx

x

Bài toán 12. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu

thức: A(x) = ( 3 - 4x + x

2

)

2004

.( 3 + 4x + x

2

)

2005

Bài toán 13. Tìm các số a, b, c nguyên dương thỏa mãn:

b

aa 553

23



và a + 3 =

c

5

Bài toán 14. Cho x = 2005. Tính giá trị của biểu thức:

120062006...200620062006

22002200320042005

 xxxxxx

Bài toán 15. Rút gọn biểu thức: N =

312

208

2

2





x

xx

xx

Bài toán 16. Trong 3 số x, y, z có 1 số dương, 1 số âm và một số 0. Hỏi mỗi số đó thuộc

loại nào biết:

zyyx

23



Bài toán 17. Tìm hai chữ số tận cùng của tổng sau:

B =

2009432

3...3333 

Bài toán 18. Cho 3x – 4y = 0. Tìm min của biểu thức: M =

22

yx 

Bài toán 19. Tìm x, y, z biết:

5432

222222

zyxzyx 



.

Bài toán 20. Tìm x, y biết rằng: x

2

+ y

2

+

22

11

yx

= 4

Bài toán 21. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ

số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 22. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4

là số chính phương.

Bài toán 23. Chứng minh rằng nếu các chữ số a, b, c thỏa mãn điều kiện

cacdab :: 

thì

cabbbcabbb :: 

.

Bài toán 24. Tìm phân số

n

m

khác 0 và số tự nhiên k, biết rằng

nk

km

n

m 

.

Bài toán 25. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu

bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 26. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 27. Tìm n biết rằng: n

3

- n

2

+ 2n + 7 chia hết cho n

2

+ 1.

Bài toán 28. Chứng minh rằng: B =

32

12

2

n

là hợp số với mọi số nguyên dương n.

Bài toán 29. Tìm số dư khi chia (n

3

- 1)

111

. (n

2

- 1)

333

cho n.

Bài toán 30. Tìm số tự nhiên n để 1

n

+ 2

n

+ 3

n

+ 4

n

chia hết cho 5.

Bài toán 31.

a. Chứng minh rằng: Nếu a không là bội số của 7 thì a

6

– 1 chia hết cho 7.

b. Cho f(x + 1)(x

2

– 1) = f(x)(x

2

+9) có ít nhất 4 nghiệm.

c. Chứng minh rằng: a

5

– a chia hết cho 10.

Bài toán 32. Tính giá trị của biểu thức: A =

54

275 zxy 

tại (x

2

– 1) + (y – z)

2

= 16

Gundam_Blade_King
5 tháng 7 lúc 21:22

Bạn viết gì vậy mình không hiểu??


Các câu hỏi tương tự
BÍCH THẢO
Xem chi tiết
Si-Chun
Xem chi tiết
Rhider
Xem chi tiết
ѕнєу
Xem chi tiết
kinzy xinh đẹp love all...
Xem chi tiết
Ngô Vi Bảo An
Xem chi tiết
Bi Nguyen
Xem chi tiết
Hà Văn Phương
Xem chi tiết
Vĩnh Thụy
Xem chi tiết