Bài 10: Cho tam giác ABC nội tiếp (O), đường cao AD, BE, CF, trực tâm H. Tia EF cắt (O) tại K. Gọi M là trung điểm BC. Gọi (A;AK) cắt đoạn thẳng MH tại N. Gọi EF cắt BC tại T.
a) Chứng minh: ANT =90. b) Chứng minh: (BNC) tiếp xúc với (A;AK).
Bài 9: Cho tam giác ABC nội tiếp (O); đường cao AD, BE, CF, trực tâm H, M là trung điểm BC. Gọi AK, AL là tiếp tuyến của (BC). a) Chứng minh: K, H, L thẳng hàng. b) Tiếp tuyến tại B và E của (BC) cắt nhau tại T. Gọi TA cắt (O) tại P. Chúng minh: M, H, P thẳng hàng.
Cho tam giác ABC nhọn nội tiếp (O) (AB<AC), 2 đường cao BE và CF cắt nhau tại H. Tia BE cắt (O) tại M (M khác B) , tia CF cắt (O) tại N (N khác C).
a) chứng minh CM=CH
b) MN cắt AB và AC lần lượt tại P và Q. gọi R là giao điểm của MN và BC. chứng minh RN . RM = RP . RQ
c) Tia AH cắt BC tại D, gọi K là trung điểm của AC. chứng minh: KEFD nội tiếp
d) đường tròn ngoại tiếp tam giác BDF cắt (O) tại T (T khác B). chứng minh H, K, T thẳng hàng.
Bài 11: Cho tam giác ABC nội tiếp (O), đường cao AD, BE, CF, trực tâm H, M là trung điểm BC. Tia MH cắt (O) tại K. Tiếp tuyến tại B, C của (O) cắt nhau tại T.TB, TC cắt EF tại P, Q.a) Chứng minh M là tâm nội tiếp tam giác TPQ.KEDMTb) Chứng minh: M,B, P, K, E đồng viên. c) Chứng minh: KP, CF cắt nhau trên (O). d) Chứng minh: TPKQ nội tiếp (J). e) Chứng minh (J) tiếp xúc (O).
Cho tam giác ABC nhọn ( AB <AC ) nội tiếp đường tròn tâm O có 3 đường cao AD ,BE,CF cắt nhau tại H. a. Chứng minh BFEC và CEHD là các tứ giác nội tiếp. b. Đường thẳng EF cắt BC tại K , cắt đường tròn O tại các điểm P,Q ( P thuộc cung nhỏ AB ) . Gọi đt giá tiếp tuyến tại A của đường tròn O . Chứng minh OA vuông góc PQ và AEQ = AQC
Cho tam giác ABC nhọn ( AB AC ) nội tiếp (O) . Gọi H là giao điểm ba đường
cao AD BE CF , , và đường thẳng EF cắt BC tại M . Đường thẳng MA cắt (O) tại K .
a) Chứng minh: Tứ giác BCEF và tứ giác MBFK nội tiếp.
b) Chứng minh: 5 điểm A K F H E , , , , cùng thuộc một đường tròn.
c) Tia KH cắt (O) tại N . Chứng minh
=
. .
2.
ABC
AB AC BC
AN
S
Giải hộ mình bài này với: Cho tam giác nhọn ABC nội tiếp đường tròn (O), có AB<AC. Kẻ các đường cao BE, CF. Gọi H là trực tâm, M là giao điểm của EF và AH. Vẽ đường kính AK cắt cạnh BC tại N.
a) Chứng minh tứ giác BFEC nội tiếp
b) Chứng minh HK song song với MN
c) Qua H vẽ đường thẳng cắt AB, AC lần lượt tại P, Q sao cho HP=HQ. Chứng minh HK vuông góc với PQ.
Cho tam giác ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Chứng minh a) BDEA nội tiếp b) AO cắt EF tại M, cắt (O) tại A’. CM EMA’C nội tiếp c) AD cắt EF tại Q, AA’ cắt BC tại P. CM QMPD nội tiếp d) Gọi R là giao điểm của CA’ và AH N là giao điểm của CF AA’ CM HNA’R nội tiếp
Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB < AC), đường tròn tâm M đường kính BC cắt AB, AC lần lượt tại F và E.Gọi H là giao điểm BE và CF, D là giao điểm của AH và BC.Vẽ đường kính AK của (O). a) Chứng minh AD là đường cao của tam giác ABC và tứ giác BFHD nội tiếp đường tròn. b) Đường thẳng EF cắt đường thẳng BC tại S, cắt (O) tại P và Q (nằm giữa S và Q). Chứng minh SP.SQ = SF.SE c) Gọi L là điểm đối xứng của C qua AK, AL cắt EF tại N.Chứng minh L thuộc (O) và DHNL nội tiếp.
giúp mình giải câu c. tứ giác DHNL nội tiếp