Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huy Quoc

Bài 5: (3 điểm) Cho ∆ABC cân tại A, kẻ AH vuông góc với BC tại H. a) Chứng minh ∆AHB = ∆AHC và AH là tia phân giác của góc BAC. b) Từ H kẻ HM vuông góc với AB, HN vuông góc với AC (M  AB, N  AC). AH cắt MN tại K. Chứng minh AH vuông góc với MN c) Trên tia đối của tia HM lấy HP sao cho H là trung điểm của MP. NP cắt BC tại E, NH cắt ME tại Q. Chứng minh P, Q, K thẳng hàng.

(Đang cần gấp) 

Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 20:38

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

Bùi Đăng Khoa
18 tháng 4 lúc 18:08

Bài 5:

a) Chứng minh ∆AHB = ∆AHC và AH là tia phân giác của góc BAC.

Vì ∆ABC cân tại A nên:

AB = AC (1) Góc ABC = góc ACB (2)

Xét ∆AHB và ∆AHC có:

Cạnh AH chung AB = AC (từ (1)) Góc AHB = góc AHC (từ (2) và AH ⊥ BC)

Vậy ∆AHB = ∆AHC (c.g.c)

Suy ra:

HB = HC Góc BAH = góc CAH

Do đó, AH là tia phân giác của góc BAC.

b) Chứng minh AH vuông góc với MN

Xét ∆AHM và ∆AHN có:

AH chung Góc AHM = góc AHN (= 90 độ) AM = AN (vì AH là tia phân giác của góc BAC)

Vậy ∆AHM = ∆AHN (cạnh huyền - góc nhọn)

Suy ra: HM = HN

Do đó, AH là đường trung trực của MN.

Vậy AH vuông góc với MN.

c) Chứng minh P, Q, K thẳng hàng

Vì H là trung điểm của MP nên HP = HM.

Xét ∆HMP và ∆HNP có:

HP = HN (cmt) MH = NH (cmt) NP chung

Vậy ∆HMP = ∆HNP (c.c.c)

Suy ra: góc MHP = góc NHP = 90 độ.

Do đó, PQ ⊥ MH và PQ ⊥ NH.

Mà AH ⊥ MN nên PQ // AH (1)

Ta lại có: K ∈ MN và AH ⊥ MN nên K ∈ PQ (2)

Từ (1) và (2) suy ra: PQ đi qua điểm K.

Vậy P, Q, K thẳng hàng.


Các câu hỏi tương tự
Nguyễn Anh Thư
Xem chi tiết
iNfinitylove
Xem chi tiết
Nhật
Xem chi tiết
Nguyễn Đắc Phú
Xem chi tiết
Hà vy
Xem chi tiết
Hồ Nhật Anh
Xem chi tiết
Minh tú Trần
Xem chi tiết
Hồ Nhật Anh
Xem chi tiết
Ziri Pấn Yamada Miko VIP
Xem chi tiết