a: Ta có: \(AE=\dfrac{AB}{2}\)
\(CF=\dfrac{CD}{2}\)
mà AB=CD
nên AE=CF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
a: Ta có: \(AE=\dfrac{AB}{2}\)
\(CF=\dfrac{CD}{2}\)
mà AB=CD
nên AE=CF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Cho hình bình hành ABCD. Gọi E là trung điểm của cạnh AB, F là trung điểm của CD.
a) C/m tứ giác AECF là hình bình hành
b) DE cắt AC ở I. BF cắt AC ở K. C/m AI=IK=KC
Giúp mình với nhé!
Cho hình bình hành ABCD gọi E,F theo thứ tự lần lượt là trung điểm của AB,CD
a) CM CE//AF
b)DE cắt AC ở I ,BF cắt AC ở K CM AI=IK=KC
Cho hình bình hành ABCD gọi E,F theo thứ tự lần lượt là trung điểm của AB,CD
a) CM CE//AF
b)DE cắt AC ở I ,BF cắt AC ở K CM AI=IK=KC
Cho hình bình hành ABCD gọi E,F theo thứ tự lần lượt là trung điểm của AB,CD
a) CM CE//AF
b)DE cắt AC ở I ,BF cắt AC ở K CM AI=IK=KC
Bài 1: Tứ giác ABCD, góc A =góc C=90 độ. Da cắt CB tại E, AB cắt CD tại F. Chứng minh rằng:
a) Góc E= góc F
b) Tia phân giác của góc E cắt AB tại G, cắt CD tại H. Tia phân giác của góc F cắt BC tại I,cắt AD tại K.
CMR: GKHI là hình thoi
Bài 2: Tam giác ABC đều. M thuộc BC, ME vuông góc với AB (E thuộc AB). ME vuông góc với AC (F thuộc AC). I thuộc AM: IA=IM. D thuộc BC: DB=DC. Chứng minh rằng:
a) Góc DIE, góc DIF=?
b) DEIF là hình thoi
Bài 3: Tam giác ABC, D thuộc AB, E thuộc AC: BD=CE. M thuộc DE: MD=ME. N thuộc BC: NB=NC. I thuộc BE: IB=IE. K thuộc CD: KC=KD. Chứng minh rằng:
a) MINK là hình?
b) IK cắt AB tại G, IK cắt AC tại H
CMR: Tam giác AGH cân
1.Cho hình bình hành ABCD .Gọi M và N là các trung điểm của AD và BC
a)C/m BM//DN
b)C/m AC ,BD và MN đồng quy
c)AC cắt BM và CN tại E và F , BF cắt CD tại K .C/m DE=2KF
2.Cho hình bình hành ABCD .Trên các cạnh AB,CD lấy điểm E,F sao cho AE=CF
a) C/m BDEF là hình bình hành
b)C/m AC ,BD và EF đồng quy
c)CD và BF cắt AC tại H và K . C/m AH=CK
Cho hình bình hành ABCD gọi E,F theo thứ tự lần lượt là trung điểm của AB,CD
a) CM CE//AF
b)ĐỂ cắt ÁC ở I ,BF cắt AC ở K CM AI=IK=KC
Cho hình bình hành ABCD. Gọi E là trung điểm của AB, F là trung điểm của CD
a, Chứng minh tứ giác AECF là hình bình hành
b, DE cắt AC tại M, BF cắt AC tại N. Chứng minh AM = MN = NC
c, Gọi O là giao điểm của AC và BD. Chứng minh E và F đối xứng nhau qua O
hbh ABCD ,cho M,N là trung điểm AB , BC . DM cắt AC tại I, BM cắt Ac tại K
a) AI =IK=KC
b) IK=2/3MN