a: (d1) và (d2) cắt nhau khi \(a-1\ne3-a\)
=>\(2a\ne4\)
=>\(a\ne2\)
(d1)//(d2) khi \(\left\{{}\begin{matrix}a-1=3-a\\2< >1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a=4\\2< >1\left(đúng\right)\end{matrix}\right.\)
=>2a=4
=>a=2
Vì \(b_1=2\ne1=b_2\)
nên (d1) và (d2) không thể trùng nhau
b: Khi hai đường thẳng cắt nhau thì phương trình hoành độ giao điểm là:
\(\left(a-1\right)x+2=\left(3-a\right)x+1\)
=>\(\left(a-1-3+a\right)x=-1\)
=>\(\left(2a-4\right)x=-1\)
=>\(x=-\dfrac{1}{2a-4}\)
Khi \(x=-\dfrac{1}{2a-4}\) thì \(y=\left(a-1\right)\cdot\dfrac{-1}{2a-4}+2\)
\(=\dfrac{-a+1}{2a-4}+2\)
\(=\dfrac{-a+1+2\left(2a-4\right)}{2a-4}=\dfrac{3a-7}{2a-4}\)
vậy: Tọa độ giao điểm là \(A\left(-\dfrac{1}{2a-4};\dfrac{3a-7}{2a-4}\right)\)