Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Linh

Bài 2. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường cao AH cắt đường
phân giác BD tại I
a) Tính độ dài các đoạn AD,DC
b) Chứng minh tam giác AID cân
c) Chứng minh AI.BI=BD.IH
d) Tia phân giác của góc HAC cắt HC tại N. chứng minh IN//AC

mienmien
15 tháng 4 2022 lúc 18:32

a) Áp dụng định lí Py-ta-go vào ΔABC vuông tại A ta có:

 \(BC^{ }=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right)\)

 Xét ΔABC có BD là p/g \(\widehat{ABC}\),theo t/c ta có:

\(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}hay\dfrac{DC}{10}=\dfrac{AD}{6}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{DC}{10}=\dfrac{AD}{6}=\dfrac{DC+AD}{10+6}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

=>\(\left\{{}\begin{matrix}DC=10.\dfrac{1}{2}=5\left(cm\right)\\AD=6.\dfrac{1}{2}=3\left(cm\right)\end{matrix}\right.\)

b) Ta có: \(\widehat{ABD}+\widehat{BDA}=\widehat{BAD}=90^o\)

               \(\widehat{DBH}+\widehat{BIH}=\widehat{BHI}=90^o\)

Mà \(\widehat{ABD}=\widehat{DBH}\)(DB là p/g \(\widehat{ABC}\)) ⇒\(\widehat{BDA}=\widehat{BIH}\)

Lại có \(\widehat{AID}=\widehat{BIH}\)( 2 góc đối đỉnh)

\(\widehat{BDA}=\widehat{AID}\) 

⇒ΔAID cân tại A

c) Xét ΔABD và ΔHBI có:

\(\widehat{BAD}=\widehat{BHI}=90^o\left(gt\right)\)

\(\widehat{ABD}=\widehat{IBH}\)(BD là p/g \(\widehat{ABC}\)

⇒ΔABD ~ ΔHBI(g-g)

\(\dfrac{AD}{IH}=\dfrac{BD}{BI}\)\(\dfrac{AD}{BD}=\dfrac{IH}{BI}\)

Mà AD=AI(ΔAID cân tại A)⇒\(\dfrac{AI}{BD}=\dfrac{IH}{BI}\Rightarrow AI.BI=BD.IH\left(đpcm\right)\)

 

 

 

 

 


Các câu hỏi tương tự
Nguyễn Thị Hương Giang
Xem chi tiết
Hieu Ngoc Nguyen
Xem chi tiết
Hằng Vu
Xem chi tiết
JOKER NO LOVE
Xem chi tiết
Nguyễn Thị Hương Giang
Xem chi tiết
Ha Pham
Xem chi tiết
Trần Phương Uyên
Xem chi tiết
N.h.i
Xem chi tiết
N.h.i
Xem chi tiết