Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoai An Nguyen

Bài 15: Cho ΔABC vuông tại A. Trên cạnh BC lấy điểm D sao cho BD BA  . Tia phân giác của  B cắt cạnh AC ở E. a) Chứng minh ΔBEA ΔBED.  b) Qua C vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. Chứng minh BF BC  c) Chứng minh ΔBAC ΔBDF  và D, E, F thẳng hàng. Bài 16: Cho ΔABC vuông tại A. Trên cạnh BC lấy điểm K

a: Xét ΔBAE và ΔBDE có

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔBAE=ΔBDE

b: Xét ΔBFC có

BH là đường cao

BH là đường phân giác
Do đó: ΔBFC cân tại B

=>BF=BC

c: Xét ΔBDF và ΔBAC có

BD=BA

\(\widehat{DBF}\) chung
BF=BC

Do đó: ΔBDF=ΔBAC

=>DF=AC

Ta có: AE+EC=AC

DE+EF=DF

mà AE=DE(ΔBAE=ΔBDE)

và AC=DF

nên EC=EF

Ta có: ΔBAE=ΔBDE

=>\(\widehat{BAE}=\widehat{BDE}\)

=>\(\widehat{BDE}=90^0\)

=>DE\(\perp\)BC

Xét ΔEAF vuông tại A và ΔEDC vuông tại E có

EA=ED

EF=EC

Do đó: ΔEAF=ΔEDC

=>\(\widehat{AEF}=\widehat{DEC}\)

mà \(\widehat{DEC}+\widehat{DEA}=180^0\)(hai góc kề bù)

nên \(\widehat{DEA}+\widehat{AEF}=180^0\)

=>D,E,F thẳng hàng


Các câu hỏi tương tự
Hanz Zan
Xem chi tiết
Minh Thư
Xem chi tiết
Liễu Lê thị
Xem chi tiết
Nam Phạm
Xem chi tiết
Anh Nguyễn Phú
Xem chi tiết
Lưu Phương Anh
Xem chi tiết
Trang Lê
Xem chi tiết
Nak Linh
Xem chi tiết
hà hoàng
Xem chi tiết