1.\(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)
=\(4\left(a^2+b^2+c^2\right)+2ab+2bc+2ac-2ab-2ab-2ac-2bc-2ac-2ab-2ac-2ab-2bc\)
= \(4\left(a^2+b^2+c^2-2\left(ab-bc-ac\right)\right)\)
2) \(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)
= \(a^2+b^2+c^2+2ab-2bc-2ac+a^2+b^2+c^2-2ab+2bc+2ac-2b^2+4bc-2c^2\)
= \(2a^2+4bc\)
3) \(\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x-1\right)^2\)
= \(x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-2x+1\right)\)
= \(6x^2+2-6x^2+12x-6\)
= \(12x-4\)
1.= a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2-2ab+2bc+2ca +a^2+b^2+c^2 -2bc+2ca-2ab+a^2+b^2+c^2-2ca+2ab-2bc
=4(a^2+b^2+c^2)
2.=a^2+b^2+c^2+2ab-2bc-2ca+a^2+b^2+c^2-2ab-2bc+2ca-2(b^2+c^2-2bc)
=2(a^2+c^2)
Thấy được thì tick đúng nhé!
\(1.\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\\ =a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2-2ab-2ac+2bc+b^2+c^2+a^2-2ab-2bc+2ac\\ =3a^2+3b^2+3c^2-2ab+2ac+2bc\)\(2.\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\\ =a^2+b^2+c^2+2ab-2ac-2bc+a^2+b^2+c^2-2ab-2bc+2ac-2b^2+4bc-2c^2\\ =a^2\)\(3.\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2\\ =x^3+3x^2+3x+1-x^3-3x^2+3x-1-6x^2+12x-6\\ =-6x^2+18x-6\)
Bài 1:
\(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2\)
\(=\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(a-b-c\right)^2+\left(a-b+c\right)^2\)
\(=\left(a+b\right)^2+2c\left(a+b\right)+c^2+\left(a+b\right)^2-2c\left(a+b\right)+c^2+\left(a-b\right)^2-2c\left(a-b\right)+c^2+\left(a-b\right)^2+2c\left(a-b\right)+c^2\)\(=2\left(a+b\right)^2+2c^2+2\left(a-b\right)^2+2c^2\)
\(=2\left[\left(a+b\right)^2+\left(a-b\right)^2\right]+4c^2\)
\(=4\left(a^2+b^2+c^2\right)\)
Bài 2:
\(\left(a+b-c\right)^2+\left(a-b+c\right)^2-2.\left(b-c\right)^2\)
\(=\left(a+b-c\right)^2-\left(b-c\right)^2+\left(a-b+c\right)^2-\left(b-c\right)^2\)
\(=\left(a+b-c+b-c\right)\left(a+b-c-b+c\right)\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)\)\(=a^2+a^2\)
\(=2a^2\)
Bài 3 cũng tương tự nha bạn.
Chúc bạn học tốt!