Bài 1 viết các đa thức sau dưới dạng 1 tích
a, A=x^3 +125
b, B= 8y^2-1
c. C=64x^3+27
Bài 2 rút gọn các biểu thức sau
a, (x+2)(x^2-2x+4)-(x^2-4)
b, B=(a+2)(a-2)(a^2+2a+4)(a^2-2a+4)
Bài 3 Tính giá trị biểu thức sau
a, A =x^2 +4x+4 tại x=198
b, B=(2x-1)^2+(2x+1)^2+2(4x^2-1) với x=1/4
c, C=(x-1)^3-(x-1)(x^2+x+1+3)(x-1)(x+1) với x=1/3
Giups mk với cảm ơn các bạn nhìu
Bài 1. a. \(A=x^3+125=\left(x+5\right)\left(x^2-5x+25\right)\)
b. \(B=8y^2-1=\left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right)\)
c. \(C=64x^3+27=\left(64x+27\right)\left(64x^2-1728x+729\right)\)
Bài 2. a. \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^2-4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left[\left(x^2-2x+4\right)-\left(x-2\right)\right]\)
\(=\left(x+2\right)\left(x^2-2x+4-x+2\right)\)
\(=\left(x+2\right)\left(x^2-3x+6\right)\)
Bài 3
a. \(A=x^2+4x+4=x^2+2.x.2+2^2=\left(x+2\right)^2\)
tại x=198, ta có:
\(\left(x+2\right)^2=\left(198+2\right)^2=40000\)
a) \(A=x^3+125=\left(x+5\right)\left(x^2-5x+25\right)\)
b) Câu b mình nghĩ 8y3 sẽ hợp hơn đấy
\(B=8y^3-1=\left(2y-1\right)\left(4y^2+2y+1\right)\)
Còn theo kiểu bạn: \(B=8y^2-1=\left(2\sqrt{2}y-1\right)\left(2\sqrt{2}y+1\right)\)
c) \(C=64x^3+27=\left(4x+3\right)\left(16x^2+12x+9\right)\)
Bài 2:
\(a,\left(x+2\right)\left(x^2-2x+4\right)-\left(x^2-4\right)\)
\(=\left(x+2\right)\left(x-2\right)^2-\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
b) Có nhầm không vậy ;-; ?
Bài 3: \(A=x^2+4x+4=\left(x+2\right)^2\)
với x=198 ta có: (198+2)2 = 40000
\(B=\left(2x-1\right)^2+\left(2x+1\right)^2+2\left(4x^2-1\right)\)
\(B=4x^2-4x+1+4x^2+4x+1+8x^2-2\)
\(B=16x^2\)
với x = 1/4 ta có : \(16\left(\dfrac{1}{4}\right)^2=1\)