Bài `1:`
`[x+1]/2020+[x+2]/2021+[x+3]/2022 < 3`
`<=>[x+1]/2020-1+[x+2]/2021-1+[x+3]/2022-1 < 0`
`<=>[x+1-2020]/2020+[x+2-2021]/2021+[x+3-2022]/2022 < 0`
`<=>[x-2019]/2020+[x-2019]/2021+[x-2019]/2022 < 0`
`<=>(x-2019)(1/2020+1/2021+1/2022) < 0`
Mà `1/2020+1/2021+2022 > 0`
`=>x-2019 < 0`
`<=>x < 2019`
Vậy `S={x|x < 2019}`