\(A=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=7\cdot2^{18}=14\cdot2^{17}⋮14\\ B=3^{100}-2^{100}+3^{98}-2^{98}\\ B=3^{98}\left(3^2+1\right)-2^{97}\left(2^3+2\right)\\ B=3^{98}\cdot10-2^{97}\cdot10=10\left(3^{98}-2^{97}\right)⋮10\\ C=1+3+3^2+...+3^{99}\\ C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\\ C=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\\ C=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{96}\right)\\ C=40\left(1+3^4+...+3^{36}\right)⋮40\)