Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
You are my sunshine

\(a,\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-\sqrt{x^2+x+1}}{x^2-2x+1}\)

\(b,\lim\limits_{x\rightarrow7}\dfrac{\sqrt{x-3}-2}{49-x^2}\)

Akai Haruma
29 tháng 1 2023 lúc 23:40

Lời giải:
a.

\(\lim\limits_{x\to 0}\frac{\sqrt{x+1}-\sqrt{x^2+x+1}}{x^2-2x+1}=\lim\limits_{x\to 0}\frac{\sqrt{0+1}-\sqrt{0^2+0+1}}{0^2-2.0+1}=0\)

b.

\(\lim\limits_{x\to 7}\frac{\sqrt{x-3}-2}{49-x^2}=\lim\limits_{x\to 7}\frac{(x-3)-2^2}{(49-x^2)(\sqrt{x-3}+2)}\)

\(=\lim\limits_{x\to 7}\frac{x-7}{-(x-7)(x+7)(\sqrt{x-3}+2)}=\lim\limits_{x\to 7}\frac{1}{-(x+7)(\sqrt{x-3}+2)}=\frac{1}{-(7+7)(\sqrt{7-3}+2)}=\frac{-1}{56}\)

 

Đoàn Đức Hà
30 tháng 1 2023 lúc 0:09

a) \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 1} - \sqrt {{x^2} + x + 1} }}{{{x^2} - 2x + 1}} = \frac{{\sqrt {0 + 1} - \sqrt {{0^2} + 0 + 1} }}{{{0^2} - 2.0 + 1}} = 0\)

b) \(\mathop {\lim }\limits_{x \to 7} \frac{{\sqrt {x - 3} - 2}}{{49 - {x^2}}} = \mathop {\lim }\limits_{x \to 7} \frac{{x - 3 - {2^2}}}{{\left( {7 - x} \right)\left( {7 + x} \right)\left( {\sqrt {x - 3} + 2} \right)}} = \mathop {\lim }\limits_{x \to 7} \frac{{ - 1}}{{\left( {7 + x} \right)\left( {\sqrt {x - 3} + 2} \right)}} = \frac{{ - 1}}{{56}}\)


Các câu hỏi tương tự
títtt
Xem chi tiết
Dương Nguyễn
Xem chi tiết
títtt
Xem chi tiết
Dương Nguyễn
Xem chi tiết
títtt
Xem chi tiết
Dương Nguyễn
Xem chi tiết
títtt
Xem chi tiết
Dang Tung
Xem chi tiết
Way Back Home
Xem chi tiết