Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thúy Hiền Mai

Ai giúp vs ạ!!! Bài nào cx đc, miễn là trên 1 bài

Hoàng Phú Thiện
2 tháng 9 2022 lúc 10:58

Câu I.

2. Ta có:

\(\sqrt{a\left(1-b\right)\left(1-c\right)}\)

\(=\sqrt{a\left(1-b-c+bc\right)}\)

\(=\sqrt{a\left(a+2\sqrt{abc}+bc\right)}\) (vì \(a+b+c+2\sqrt{abc}=1\) nên \(a+2\sqrt{abc}=1-b-c\))

\(=\sqrt{a\left(\sqrt{a}+\sqrt{bc}\right)^2}\)

\(=\left|\sqrt{a}+\sqrt{bc}\right|\sqrt{a}\)

\(=\left(\sqrt{a}+\sqrt{bc}\right)\sqrt{a}\) (vì \(\sqrt{a}+\sqrt{bc}>0\))

\(=\sqrt{a^2}+\sqrt{abc}\)

\(=\left|a\right|+\sqrt{abc}\)

\(=a+\sqrt{abc}\) (vì \(a>0\))

Tương tự, ta cũng có:

\(\sqrt{b\left(1-c\right)\left(1-a\right)}=b+\sqrt{abc}\)

\(\sqrt{c\left(1-a\right)\left(1-b\right)}=c+\sqrt{abc}\)

Khi đó:

\(B=\sqrt{a\left(1-b\right)\left(1-c\right)}+\sqrt{b\left(1-c\right)\left(1-a\right)}+\sqrt{c\left(1-a\right)\left(1-b\right)}-\sqrt{abc}\)

\(=\left(a+\sqrt{abc}\right)+\left(b+\sqrt{abc}\right)+\left(c+\sqrt{abc}\right)-\sqrt{abc}\)

\(=a+\sqrt{abc}+b+\sqrt{abc}+c+\sqrt{abc}-\sqrt{abc}\)

\(=a+b+c+2\sqrt{abc}\)

\(=1\) (vì \(a+b+c+2\sqrt{abc}=1\))


Các câu hỏi tương tự
namdz
Xem chi tiết
Ling ling 2k7
Xem chi tiết
Kaneki Ken
Xem chi tiết
Nguyễn Thị Ngọc Anh
Xem chi tiết
Acc Clone Thanh Huyền
Xem chi tiết
Nguyên Anh Phạm
Xem chi tiết
Nguyễn Bảo Trâm
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
Phùng Ái Nguyên
Xem chi tiết
Gia Bảo
Xem chi tiết