Áp dụng a/b<1 suy ra a/b<a+m/b+m(a,b,m thuộc N sao)
Suy ra A< 2/3.4/5.6/7...100/101
A2<1/2.2/3.3/4.4/5.5/6.6/7...99/100.100/101
A2<1/101<1/100=(1/10)2
Suy ra A<1/10<1/15
Chứng tỏ A<1/15
Áp dụng a/b<1 suy ra a/b<a+m/b+m(a,b,m thuộc N sao)
Suy ra A< 2/3.4/5.6/7...100/101
A2<1/2.2/3.3/4.4/5.5/6.6/7...99/100.100/101
A2<1/101<1/100=(1/10)2
Suy ra A<1/10<1/15
Chứng tỏ A<1/15
Cho A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)Chứng minh rằng:\(\frac{1}{15}< A< \frac{1}{10}\)
Chứng minh rằng
a) \(\frac{1}{5}<\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{98}-\frac{1}{99}<\frac{2}{5}\)
b) \(\frac{1}{15}<\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}<\frac{1}{10}\)
A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}......\frac{97}{98}.\frac{99}{100}\)
Chứng minh 1/15 < A < 1/10
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
Chứng minh 1/15 < A < 1/10
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
Chứng minh 1/15 < A < 1/10
Cho \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
Chứng minh rằng 1/15 < A < 1/10
cho A=\(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\frac{99}{100}\)
CHỨNG MINH \(\frac{1}{15}< a< \frac{1}{10}\)
Cho A = \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\)
Chứng minh rằng \(\frac{1}{15}< A< \frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
Chứng minh \(\frac{1}{15}