\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{47\cdot49}\right)\)
=1/2(1-1/3+1/3-1/5+...+1/47-1/49)
=1/2*48/49=24/49
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{47\cdot49}\right)\)
=1/2(1-1/3+1/3-1/5+...+1/47-1/49)
=1/2*48/49=24/49
tính tổng
S=\(\dfrac{1}{1.3}-\dfrac{1}{2.4}+\dfrac{1}{3.5}-\dfrac{1}{4.6}+\dfrac{1}{5.7}-\dfrac{1}{6.8}+\dfrac{1}{7.9}-\dfrac{1}{8.10}\)
giúp nha
B=\(\dfrac{-1}{3}\)+ \(\dfrac{-1}{3.5}\)+ \(\dfrac{-1}{5.7}\)+ \(\dfrac{-1}{7.9}\) +... + \(\dfrac{-1}{99.101}\)
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+......+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{49}{99}\)
Tìm x biết :\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{49}{99}\)
\(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+.....+\left|x+\dfrac{1}{197.199}\right|=100x\)
a) \(\dfrac{1}{5.7}\)+\(\dfrac{1}{7.9}\)+...+\(\dfrac{1}{2011.2013}\)
b) \(\dfrac{1}{7.11}\)+\(\dfrac{1}{11.15}\)+\(\dfrac{1}{15.19}\)+...\(\dfrac{1}{2019.2023}\)
\(\dfrac{4}{3.5}+\dfrac{4}{5.7}+\dfrac{4}{7.9}+......+\dfrac{4}{97.95}\)
A=\(\dfrac{4}{3.5}-\dfrac{6}{5.7}+\dfrac{8}{7.9}-\dfrac{10}{9.11}+\dfrac{12}{11.13}-...-\dfrac{100}{99.100}\)
Tính giá trị của A
Tính giá trị của biểu thức:
\(A=\dfrac{1}{2}.\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)....\left(\dfrac{1}{2015.2017}\right)\)
Tính giá trị của biểu thức :\(A=\dfrac{1}{2}.\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)....\left(1+\dfrac{1}{2019.2021}\right)\)