a: \(2A=2^2+2^3+...+2^{101}\)
\(\Leftrightarrow A=2^{101}-2\)
b: \(5B=5+5^2+5^3+...+5^{151}\)
\(\Leftrightarrow4B=5^{151}-1\)
hay \(B=\dfrac{5^{151}-1}{4}\)
`A = 2 + 2^2 + ... + 2^100`
`=> 2A = 2^2 + 2^3 + ... + 2^101`
`=> 2A - A = (2^2 + 2^3 + ... + 2^101) - (2 + 2^2 + ... + 2^100)`
`=> A = 2^101 - 2`
_________________________________________
`B = 1 + 5 + ... + 5^150`
`=> 5B = 5 + 5^2 + ... + 5^151`
`=> 5B-B = (5 + 5^2 + ... + 5^101) - (1 + 5 + ... + 5^150)`
`=> 4B = 5^101 - 1`
`=> B = (5^101-1)/4`
_______________________________________
đề sai sửa lại đề :
`C = 3 + 3^2 + .... + 3^1000`
`=> 3C = 3^2 + 3^3 + ... + 3^1001`
`=> 3C - C = (3^2 + 3^3 + ... + 3^1001) - (3 + 3^2 + ... + 3^1000)`
`=> 2C = 3^1001 - 3`
`=> C = (3^1001 - 3)/2`