\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{127}\)
\(=\left(\dfrac{1}{127}+1\right).127\div2\)
\(=\dfrac{128}{127}.127\div2\)
\(=128\div2\)
= 64
Vậy A>4
=1+1/2+1/3+...+1/127
=(1/127+1).1/27÷2
=128/127.127÷2
=128÷2
= 64
Vậy A>4
\(A=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{127}\)
\(=\left(\dfrac{1}{127}+1\right).127\div2\)
\(=\dfrac{128}{127}.127\div2\)
\(=128\div2\)
= 64
Vậy A>4
=1+1/2+1/3+...+1/127
=(1/127+1).1/27÷2
=128/127.127÷2
=128÷2
= 64
Vậy A>4
a , cho A = \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}\) . Chứng minh A < \(\dfrac{7}{4}\)
b ,cho B = 21 + 22 + 23 + ... + 260 . Chứng minh B \(⋮\) 21
chứng minh rằng
a , \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+...+\dfrac{1}{512}-\dfrac{1}{1024}\) < \(\dfrac{1}{3}\)
b , \(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\) < \(\dfrac{3}{16}\)
Chứng Minh Rằng : A= \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{100^2}\) <\(\dfrac{3}{4}\)
2. Chứng minh
a, \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{50^2}\) < 1
b, \(\dfrac{1}{3}\)< \(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{150}\)< \(\dfrac{1}{2}\)
Chứng minh với mọi số n \(\inℕ\) ; n>1 ta có:
A=\(\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\)
Chứng minh rằng \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< 1\)
Chứng minh rằng A= \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{10^2}\)<1
Cho: A= 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2^{100}-1}\)
Chứng minh rằng: 50 < A < 100
Giúp mình với!
\(A=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{2020}}-\dfrac{1}{2^{2022}}
\)
Chứng minh A<0.2