A=1+21+22+23+...+2100
2A=2+22+23+24+...+2101
2A-A=2101-1
A=2101-1
Ta có 2101>2101-1 nên B>A
2A=2+2^2+2^3+2^4+....+2^101
=> 2A-A=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+...+2^100)
<=> A=2^101-1 > B=2^101
2A=2+2^2+...+2^101
=>2A-A=(2+2^2+...+2^101)-(1+2+2^2+...+2^100)
=> A=2^101-1<2^101=B
vậy a<b
A=2^0+2^1+2^2+2^3+2^4+...+2^100
2A=2^1+2^2+2^3+2^4+2^5+...+2^100+2^101
2A-A=(2^1+2^2+2^3+2^4+2^5+...+2^100+2^101)-(2^0+2^1+2^2+2^3+2^4+...+2^100)
\(\Rightarrow\)A=2^101-1
Ta thấy A=2^101-1<2^101.Vậy A<B