a: Ta có: \(N=\dfrac{x^3-1}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)^2}\)
\(=\dfrac{x^2+x+1}{x-1}\)
\(=\dfrac{\left(-1\right)^2+\left(-1\right)+1}{-1-1}=\dfrac{1}{-2}=-\dfrac{1}{2}\)
b: Ta có: \(M=\dfrac{x^3+8}{x^2-2x+4}\)
\(=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{x^2-2x+4}\)
\(=x+2=0\)
a) \(N=\dfrac{x^3-1}{x^2-2x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)^2}=\dfrac{x^2+x+1}{x-1}=\dfrac{\left(-1\right)^2-1+1}{-1-1}=-\dfrac{1}{2}\)b) \(M=\dfrac{x^3+8}{x^2-2x+4}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{x^2-2x+4}=x+2=-2+2=0\)