a: \(=5\cdot5\sqrt{3}-\dfrac{1}{3}\cdot3\sqrt{3}=24\sqrt{3}\)
b: \(=\dfrac{12\left(3+\sqrt{5}\right)}{4}=9+3\sqrt{5}\)
c: \(=3-\sqrt{5}+\sqrt{5}=3\)
a: \(=5\cdot5\sqrt{3}-\dfrac{1}{3}\cdot3\sqrt{3}=24\sqrt{3}\)
b: \(=\dfrac{12\left(3+\sqrt{5}\right)}{4}=9+3\sqrt{5}\)
c: \(=3-\sqrt{5}+\sqrt{5}=3\)
Trục căn thức ở mẫu của biểu thức
a) \(\dfrac{4}{3-5}\)
b) \(\dfrac{2}{5+\sqrt{7}}\)
Bài 1 : (2 điểm) : Thực hiện phép tính và rút gọn các biểu thức sau :
a)A\(=-\left(\dfrac{1}{3-\sqrt{5}}+\dfrac{1}{3+\sqrt{5}}\right):\sqrt{5}\)
b)\(B=\sqrt{48+\sqrt{5\dfrac{1}{3}+2\sqrt{75}-\sqrt[5]{1\dfrac{1}{3}}}}\)
trục căn thức và thực hiện phép tính
1) \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2) \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
Trục căn thức ở mẫu của các biểu thức sau:
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\); \(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\)
Trục căn thức ở mẫu biểu thức \(\dfrac{5}{3\sqrt{8}}\)
1) Khử mẫu các biểu thức dưới dấu căn rồi thực hiện phép tính:
\(2\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-\sqrt{\frac{1}{15}}\)
2) Trục căn thức ở mẫu:
a) \(\frac{9}{\sqrt{3}}\)
b) \(\frac{12}{3-\sqrt{3}}\)
c) \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
d) \(\frac{7\sqrt{3}-5\sqrt{11}}{8\sqrt{3}-7\sqrt{11}}\)
e) \(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\)
f) \(\frac{1}{\sqrt{18}+\sqrt{8}-2\sqrt{2}}\)
g) \(\frac{1}{1+\sqrt{2}-\sqrt{3}}\)
h) \(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}\)
Thực hiện phép tính (rút gọn biểu thức)
a)\(\sqrt{20}\)-3\(\sqrt{45}\)-\(\dfrac{1}{2}\sqrt{80}\)
b) 12\(\sqrt{54}\)-\(\dfrac{2}{5}\)\(\sqrt{150}\)+3\(\sqrt{24}\)
có ai biết giải bài này k hộ mình vs ( chi tiết hộ mình nhé )
bài 1: trục căn thức ở mẫu và rút gọn
a, \(\dfrac{1}{2\sqrt{2}-3\sqrt{3}}\)
b, \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
bài 2: trục căn thức ở mẫu và rút gọn
a, \(\dfrac{\sqrt{8}}{\sqrt{5}-\sqrt{3}}\)
b, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
bài 3: trục căn thức và thực hiện phép tính
a, M=\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
b, N= \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
B 5.Tính giá trị của các biểu thức:
a) (\(\sqrt{12}\)-2\(\sqrt{108}\)+3\(\sqrt{75}\)).\(\sqrt{3}\) b)(3\(\sqrt{8}\)- 4\(\sqrt{32}\)+5\(\sqrt{18}\)):5
c)(\(\sqrt{20}\)-2\(\sqrt{45}\)+3\(\sqrt{125}\) ):\(\sqrt{5}\) d)(3\(\sqrt{7}\)-4\(\sqrt{28}\)+5\(\sqrt{343}\)).\(\dfrac{1}{10}\)