a,Áp sụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x-2z}{9-14}=\dfrac{15}{-5}=-3\\\Rightarrow x=-3.3=-9\\ \Rightarrow y=-3.5=-15\\ \Rightarrow z=-3.7=-21 \)
a) Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x}{9}=\dfrac{2z}{14}=\dfrac{3x-2z}{9-14}=\dfrac{15}{-5}=-3\) (Vì 3x-2z=15)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-3\\\dfrac{y}{5}=-3\\\dfrac{z}{7}=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-21\end{matrix}\right.\)
Vậy ...
b) Ta có: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x}{10}=\dfrac{3y}{9}=\dfrac{2x-3y}{10-9}=\dfrac{100}{1}=100\) (Vì 2x-3y=100)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=100\\\dfrac{y}{3}=100\\\dfrac{z}{2}=100\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=500\\y=300\\z=200\end{matrix}\right.\)
Vậy ...
c) Ta có: \(\dfrac{x}{-3}=\dfrac{y}{-5}=\dfrac{z}{-4}=\dfrac{3z}{-12}=\dfrac{2x}{-6}=\dfrac{3z-2x}{\left(-12\right)-\left(-6\right)}=\dfrac{36}{-18}=-2\) (Vì 3z-2x=36)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-3}=-2\\\dfrac{y}{-5}=-2\\\dfrac{z}{-4}=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=10\\z=8\end{matrix}\right.\)
Vậy ...
d: x/2=y/1=z/3
mà 3x+4z=16+2=18
nên Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{1}=\dfrac{z}{3}=\dfrac{3x+4z}{3\cdot2+4\cdot3}=\dfrac{18}{18}=1\)
=>x=2; y=1; z=3
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x-2z}{3\cdot3-2\cdot7}=\dfrac{15}{-5}=-3\)
=>x=-9; y=-15; z=-21
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x-3y}{2\cdot5-3\cdot3}=\dfrac{100}{1}=100\)
=>x=500; y=300; z=200
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{4}=\dfrac{3z-2x}{3\cdot4-2\cdot3}=\dfrac{36}{6}=6\)
=>x=18; y=30; z=24