B và xin bạn hãy giải rùm mình bài toán trên
B và xin bạn hãy giải rùm mình bài toán trên
a, 1\(\dfrac{5}{18}\)+\(\dfrac{7}{25}\)-\(\dfrac{5}{18}\)+\(\dfrac{18}{25}\)-0, 75
b, \(\dfrac{2}{5}\).\(\dfrac{1}{3}\)-\(\dfrac{4}{3}\).\(\dfrac{2}{5}\)
c, (\(\dfrac{-1}{4}\)).( 6\(\dfrac{2}{11}\)) + 3 \(\dfrac{9}{11}\).(\(\dfrac{-1}{4}\))
d, 4. (-\(\dfrac{1}{2}\))\(^{3_{ }}\)-\(_{ }\)2. (\(\dfrac{-1}{2}\))\(^2\) + 3. (\(\dfrac{-1}{2}\)) + 1
e, \(\dfrac{1}{6}\)-(\(\dfrac{2}{3}\))\(^2\) + \(\dfrac{5}{18}\)
f, (\(\dfrac{4}{3}\)-\(\dfrac{3}{2}\))\(^2\)- 2.|-\(\dfrac{1}{9}\)| + (-\(\dfrac{5}{18}\))
Tìm số nguyên x, biết:
a) \(-4\dfrac{3}{5}\). \(2\dfrac{4}{3}\) < x < \(-2\dfrac{3}{5}\) : \(1\dfrac{6}{15}\)
b) \(-4\dfrac{1}{3}\).(\(\dfrac{1}{2}\)-\(\dfrac{1}{6}\)) < x < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
1) So sánh :
a) \(3^{2^3}\) và (32)3 b) (-8)9 và (-32)5 c) 221 và 314
2) Cho \(\dfrac{a}{b}=\dfrac{c}{d}.\) Chứng minh rằng :
a)\(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\) b) \(\dfrac{ab}{cd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)
a) 1 + \(\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{2}}}\)
b) 1 - \(\dfrac{1}{1-\dfrac{1}{1-\dfrac{1}{9}}}\)
c) -3 + \(\dfrac{1}{1+\dfrac{1}{3+\dfrac{1}{1+\dfrac{1}{3}}}}\)
a)\(0,5+\dfrac{1}{3}+0,4+\dfrac{5}{7}-\dfrac{1}{6}-\dfrac{4}{35}\)
b)\(\left(3-\dfrac{1}{4}+\dfrac{2}{3}\right)-\left(5+\dfrac{1}{3}-\dfrac{6}{5}\right)-\left(-6-\dfrac{7}{4}+\dfrac{3}{2}\right)\)
c)\(\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
Tính:
a/\(A=\left(-0,75-\dfrac{1}{4}\right):\left(-5\right)+\dfrac{1}{48}-\left(\dfrac{-1}{6}\right):\left(-3\right)\)
b/\(B=\left(\dfrac{6}{25}-1,24\right):\dfrac{3}{7}:\left[\left(3\dfrac{1}{2}-3\dfrac{2}{3}\right):\dfrac{1}{14}\right]\)
1. So sánh
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\) và B= \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{13}{60}\)
b) \(C=\dfrac{2019}{2021}+\dfrac{2021}{2022}\) và \(D=\dfrac{2020+2022}{2019+2021}.\dfrac{3}{2}\)
a,2.(\(\dfrac{1}{4}\)+x)\(^3\)=(\(-\dfrac{27}{4}\))
b,(x+\(\dfrac{1}{2}\))\(^3\):3=\(\dfrac{-1}{81}\)
c,(\(\dfrac{2}{3}\)-x)\(^2\)=1:\(\dfrac{4}{9}\)
d,(2x-\(\dfrac{1}{5}\))\(^2\)+\(\dfrac{16}{25}\)=1
e,(\(\dfrac{2}{5}\)-3x)\(^2\)-\(\dfrac{1}{5}\)=\(\dfrac{4}{25}\)