Cho hàm số y =f(x)=ax+b. Biết \(f\left(3\right)\le f\left(1\right)\le f\left(2\right)\)và f(4)=2. Chứng minh rằng: a=0 và f(0)=2
Cho x, y, z thỏa mãn \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{3}{4}\)
Chứng minh rằng: \(x+y+z\le4\)
1. Cho a,b,c,d là các số dương. Chứng minh rằng: \(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
2. Cho (x;y;z) và (a;b;c) là các số dương. Chứng minh rằng: \(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
3. Cho c>0 và a,b≥c. Chứng minh rằng: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Cho 0 < x \(\le y\le z\)
Chứng minh rằng: \(y\left(\frac{1}{x}+\frac{1}{z}\right)+\frac{1}{y}\left(x+z\right)\le\left(x+z\right)\left(\frac{1}{x}+\frac{1}{z}\right)\)
Cho x, y > 0 và 2x > y. Chứng minh rằng : \(\left(\dfrac{1}{x}+2\right)^2.\left(\dfrac{2}{y}-\dfrac{1}{x}\right).\dfrac{2y-1}{y}\le\dfrac{81}{8}\)
Cho x, y, z thỏa mãn \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{4}{3}\)
chứng minh rằng x+y+z\(\le\)4
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{x+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
cho x,y,z>0 với xy+yz+zx=3
Chứng minh rằng \(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(x+z\right)}+\frac{1}{1+z^2\left(y+x\right)}\le\frac{1}{xyz}\)
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)