`9(x-1)^2-4/9:2/9=1/4`
`=>9(x-1)^2-2=1/4`
`=>9(x-1)^2=1/4+2=9/4`
`=>(x-1)^2=9/4:9=1/4`
`=>[((x-1)^2=(1/2)^2),((x-1)^2=(-1/2)^2):}`
`=>[(x-1=1/2),(x-1=-1/2):}`
`=>[(x=3/2),(x=1/2):}`
`9.(x-1)^2 - 4/9 : 2/9 = 1/4`
`9.(x-1)^2 - 4/9 . 9/2 =1/4`
`9.(x-1)^2 - 2=1/4`
`9.(x-1)^2 = 1/4+2`
`9.(x-1)^2 = 1/4+8/4`
`9.(x-1)^2 = 9/4`
`(x-1)^2 = 9/4 :9`
`(x-1)^2 = 9/4 . 1/9`
`(x-1)^2 = 1/4`
\(\left(x-1\right)^2=\left(\pm\dfrac{1}{2}\right)^2\)
`@Th1:`
`x-1=1/2`
`x=1/2+1`
`x=1/2+2/2`
`x=3/2`
`@Th2:`
`x-1=-1/2`
`x=-1/2+1`
`x=-1/2+2/2`
`x=1/2`
Vậy ` x = {3/2; 1/2}`
9(x−1)2−49:29=149(x-1)2-49:29=14
⇒9(x−1)2−2=14⇒9(x-1)2-2=14
⇒9(x−1)2=14+2=94⇒9(x-1)2=14+2=94
⇒(x−1)2=94:9=14⇒(x-1)2=94:9=14
⇒⎡⎢ ⎢⎣(x−1)2=(12)2(x−1)2=(−12)2⇒[(x-1)2=(12)2(x-1)2=(-12)2
⇒[x−1=12x−1=−12⇒[x-1=12x-1=-12
⇒[x=32x=12
\(9\left(x-1\right)^2-\dfrac{4}{9}:\dfrac{2}{9}=\dfrac{1}{4}\)
\(9\left(x-1\right)^2-2=\dfrac{1}{4}\)
\(9\left(x-1\right)^2=\dfrac{1}{4}+2\)
\(9\left(x-1\right)^2=\dfrac{9}{4}\)
\(\left(x-1\right)^2=\dfrac{9}{4}:9\)
\(\left(x-1\right)^2=\dfrac{1}{4}\)
\(\left(x-1\right)^2=\pm\left(\dfrac{1}{2}\right)^2\)
\(\Rightarrow x-1=\pm\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{1}{2}\\x-1=\dfrac{-1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)