\(\hept{\begin{cases}x^4+6x^2y+3xy^2+2xy+y^4+4y^2=x^3+6x^2y^2+4x^2+x+2y^2+4y\\4x^3y+6xy^2+4x+y^3+y^2+13=2x^3+3x^2y+x^2+4xy^3+8xy+y\end{cases}}\)
\(\hept{\begin{cases}\sqrt{x^2+2y+3}+2y=3\\2\left(x^3+2y^3\right)+3y\left(x+1\right)^2+6x^2+6x+2=0\end{cases}}\)
voi
giải hệ :1, x^3-6x^2y+9xy^2-4y^3=0 v căn (x-y) + căn (x+y) = 2
2,xy+x-2=0 v 2x^3-x^2y+x^2+y^2-2xy-y=0
cho biểu thức :
a) \(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}=4\)
tính \(A=\sqrt{x^2-6x+22}-\sqrt{x^2-6x+10}\)
b) \(\sqrt{y^2+2y-10}-\sqrt{y^2+2y+15}=5\)
tính \(B=\sqrt{y^2-2y-10}+\sqrt{y^2+2y+15}\)
\(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{cases}}\)
Giải hệ\(\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\\\sqrt[3]{4x+y+1}+\sqrt{3x+2y}=4\end{matrix}\right.\)
Giải hệ\(\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x=1\\\sqrt[3]{4x+y+1}+\sqrt{3x+2y}=4\end{matrix}\right.\)
1) 6x2-6y2-5xy+8x+y+13=0
2) 9x2-6y2+3xy-9x+y-5=0
3)6x2-2y2-4xy-31x-5y+13=0
4) 2x2-2y2+3xy-12x+11y-17=0