\(6\sqrt{xy^2}-y\sqrt{4x}+3y\sqrt{x}=6\left|y\right|.\sqrt{x}-2y.\sqrt{x}+3y\sqrt{x}=6y\sqrt{x}-2y\sqrt{x}+3y\sqrt{x}=7y\sqrt{x}\)
\(6y\sqrt{x}-2y\sqrt{x}+3y\sqrt{x}=7y\sqrt{x}\)
\(6\sqrt{xy^2}-y\sqrt{4x}+3y\sqrt{x}=6\left|y\right|.\sqrt{x}-2y.\sqrt{x}+3y\sqrt{x}=6y\sqrt{x}-2y\sqrt{x}+3y\sqrt{x}=7y\sqrt{x}\)
\(6y\sqrt{x}-2y\sqrt{x}+3y\sqrt{x}=7y\sqrt{x}\)
Cho x,y>0 thỏa \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)
Tính giá trị P=\(\dfrac{x+3y}{\left(\sqrt{x}+3\sqrt{y}\right)\sqrt{x+4y+4\sqrt{xy}}}\)
Mn giúp em với ạ em xin cảm ơn trước ạ<3
cho x,y>0 thỏa mãn \(2\sqrt{xy}+\sqrt{\dfrac{x}{3}}=1\).Tìm GTNN của P=\(\dfrac{y}{x}+\dfrac{4x}{3y}+15xy\)
Rút gọn:
a/ \(\frac{\left(\sqrt{x^2+9}-3\right)\left(\sqrt{x^2+9}+3\right)\left(x+\sqrt{xy}+y\right)\sqrt{x-2\sqrt{xy}+y}}{x\left(x\sqrt{x}-y\sqrt{y}\right)}\) (với x>0, y\(\ge\)0, x\(\ne\)y
b/ \(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)(với x>0 và x\(\ne\)1
c/ \(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)(với x>0 và x\(\ne\)1
rút gọn:
\(a,\frac{\sqrt{4mn^2}}{\sqrt{20m}}\left(m>0,n>0\right)\)
\(b,\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}\left(a< 0,b\ne0\right)\)
\(c,\frac{y-\sqrt{xy}}{x-\sqrt{xy}}\)với\(xy>0,y\ne1\)
\(d,\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)với \(x>0,y>0,y\ne1\)
\(e,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)với \(x>0\)
35Cho biểu thức
P=\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
a) Rút gọn P
b)Cho xy=16 . Tìm Min P
34 Cho biểu thức
P=\(\frac{x}{\sqrt{xy}-2y}-\frac{2\sqrt{x}}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}-\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn P
b)Tính P biết 2x^2+y^2-4x-2xy+4=0
Tìm Min của: \(\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\) với x,y>0
Cho xy+yz+zx=5 x,y,z>0
Tìm Min của A= \(\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{z^2+5}}\)
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)
Rút gọn
a) \(\frac{x}{y}\sqrt{\frac{y^2}{x^4}}\left(x\ne0;y>0\right)\) b) \(3x^2\sqrt{\frac{8}{x^2}}\left(x< 0\right)\) c) \(2x^3y^3\sqrt{\frac{4}{x^8y^6}}\left(x\ne0;y< 0\right)\)
d)\(\frac{\sqrt{4x^4y^6}}{\sqrt{196x^6y^6}}\left(x< 0;y\ne0\right)\)
1. Tính:
a) A= \(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)(dấu căn đầu tiên là của cả biểu thức)
b) B= \(\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
2. Cho:
A= \(\left(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right):\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)với x>0, y>0
a) Rút gọn A
b) Cho xy=16. Tìm x,y để A có GTNN. Tìm Gt đó