Cho tam giác ABC cân tại A, AB > BC, H là trung điểm của BC.
a) Chứng minh: ∆ A B H = ∆ A C H . Từ đó suy ra AH vuông góc với BC.
b) Tính độ dài AH nếu BC = 4 cm, AB = 6 cm.
c) Tia phân giác của góc B cắt AH tại I. Chứng minh tam giác BIC cân.
d) Đường thẳng đi qua A và song song với BC cắt tia BI, CI lần lượt tại M, N. Chứng minh A là trung điểm của đoạn thẳng MN.
e) Kẻ IE vuông góc với AB tại E, IF vuông góc với AC tại F. Chứng minh IH = IE = IF
f) Chứng minh: IC vuông góc với MC.
Tam giác ABC cân tại A, có AB>Bc; H là trung điểm BC
a) CMR: Tam giác ABH= tam giác ACH từ đó CM AH vuông góc với BC
b) Nếu BC=4cm; AB=6cm. AH =?
c) Tia phân giác góc B giao AH tại I. CMR: tam giác BIC cân
d) Đường thẳng đi qua A và song song với BC cắt BI, CI lần lượt tại M,N. CMR: A là trung điểm của MN
e) Kẻ IE vuông góc với AB tại E, IF vuông góc với AC tại F. CMR: IH=IE=IF
f) IC vuông góc với MC
Cho tam giác ABC, I là giao điểm của 3 đường phân giác trong tam giác, AB=3 cm, BC= 5 cm, AC= 3 cm. Từ I kẻ IE vuông góc với AC, ID vuông góc AB, IF vuông góc BC. TÍnh ID
Bài 1: Cho tam giác ABC ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A là ABD và ACE có AB=AD, AC=AE. Kẻ AH vuông góc với BC, gọi I là giao điểm của AH với DE. Kẻ DM vuông góc với IH, EL vuông góc với IH. Chứng minh:
a) Tam giác HBD= tam giác MAD
b) Tam giác HCA= tam giác LEA
c) ID=IE
Bài 2: Cho tam giác ABC có AB>AC. Trên tia đối của tia CA lấy điểm D sao cho CD=AB. Gọi I là giao điểm của đường trung trực của BC và AD. Chứng minh:
a) Tam giác AIB= tam giác DIC
b) AI là tia phân giác của góc BAC
c) Kẻ IE vuông góc với AB. Chứng minh AE=\(\frac{1}{2}\) AD
Bài 2: Cho tam giác ABC. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ ID vuông góc với AB (D thuộc AB) kẻ IE vuông góc AC (E thuộc AC) và kẻ IF vuông góc với BC (F thuộc BC). Chứng minh:
a) ID = IF và IE = IF;
b) AI là tia phân giác của góc A.
Cho tam giác ABC, có AB = AC. Tia phân giác của góc A cắt BC tại I.
a) Chứng minh tam giác AIB = tam giác AIC
b) Từ I kẻ IH,IK lần lượt vuông góc với AB,AC (H thuộc AB, K thuộc AC). Chứng minh IH = IK
c) Gọi M là giao điểm của HI và AC, N là giao điểm của KI và AB, P là trung điểm của MN. Chứng minh A,I,P thẳng hàng
Cho tam giác ABC cân tại A, AB > BC, H là trung điểm của BC.
a) Chứng minh: tam giác AHB = tam giác AHC. Từ đó suy ra AH vuông góc với BC.
b) Tính độ dài AH nếu BC = 4cm; AB = 6cm.
c) Tia phân giác của góc B cắt AH tại I. Chứng minh tam giác BIC cân.
d) Đường thẳng đi qua A và song song với BC cắt tia BI, CI lần lượt tại M, N. Chứng minh rằng: A là trung điểm của MN.
e) Kẻ IE vuông góc với AB, IF vuông góc với AC. Chứng minh IE = IF = IH.
f) Chứng minh IC vuông góc với MC.
Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC (H thuộc BC). Từ H kẻ HI, HK lần lượt vuông góc với AB và AC (I thuộc AB, K thuộc AC). Trên tia đối của tia IH, KH lần lượt láy các điểm E và F sao cho IE = IH và KF = KH.
a) Chứng minh AE = AF
b) Giả sử góc BAC = 60 độ. Hãy tính số đo các góc của tam giác AEF.
Cho tam giác ABC cân tại A, AB>BC, H là trung điểm của BC
a, Chứng minh: tam giác ABH = tam giác ACH. Từ đó suy ra AH vuông góc với BC
b, Tính độ dài AH nếu BC=4cm, AB=6m
c, Tia phân giác của góc B cắt AH tại I. Chứng minh tam giác BIC cân
d, Đường thẳng đi qua A và song song với BC cắt tua BI, CI lần lượt tại M ,N. Chứng minh A là trung điểm của đoạn thẳng MN
e, Kẻ IE vuông góc với AB tại E, IF vuông góc với AC tại F. Chứng minh IH=IE=IF
f, Chứng minh: IC vuông góc với MC ( vẽ hình+ ghi giả thiết )
Cho tam giác ABC đều. Kẻ tia phân giác của góc A và góc B cắt nhau tại I. Qua I kẻ ID vuông góc với BC ( D thuộc BC), IE vuông góc với AB ( E thuộc AB), kẻ IF vuông góc với AC( F thuộc AC)
Chứng minh ID = IE = IF