A = 5100 - 599 + 598 - 597 + ... + 52 - 5
5A = 5101 - 5100 + 599 - 598 + ... + 53 - 52
5A + A = 5101 - 5
6A = 5101 - 5
A = \(\dfrac{5^{101}-5}{6}\)
\(\text{Đặt }A=5^{100}-5^{99}+5^{98}-5^{97}+...+5^2-5\\5A=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2\\5A+A=(5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2)+(5^{100}-5^{99}+5^{98}-5^{97}+...+5^2-5)\\\\6A=5^{101}-5\\\Rightarrow A=\frac{5^{101}-5}{6}\)
Đặt \(A=5^{100}-5^{99}+5^{98}-5^{97}+...+5^2-5\)
Ta có: \(5A=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2\)
\(\Rightarrow5A+A=\left(5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2\right)+\left(5^{100}-5^{99}+5^{98}-5^{97}+...+5^2-5\right)\)
\(\Rightarrow6A=5^{101}-5\)
\(\Rightarrow A=\dfrac{5^{101}-5}{6}\)