`4x^2+4x+1=x^2`
`<=>3x^2+4x+1=0`
`<=>3x^2+3x+x+1=0`
`<=>3x(x+1)+(x+1)=0`
`<=>(x+1)(3x+1)=0`
`<=>` $\left[\begin{matrix} x+1=0\\ 3x+1=0\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x=-1\\ x=\dfrac{-1}{3}\end{matrix}\right.$
Vậy `S={-1;[-1]/3}`
4x2+4x+1=x2
\(\Leftrightarrow3x^2+4x+1=0\)
\(\Leftrightarrow3x^2+3x+x+1=0\)
\(\Leftrightarrow3x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
4x2 + 4x + 1 = x2
4x2 + 4x + 1 - x2 = 0
3x2 + 4x + 1 = 0
a + b = 4; ab = 3 . 1 = 3
a = 1; b = 3
( 3x2 + x ) + ( 3x + 1 )
x( 3x + 1 ) + 3x + 1
( 3x + 1 ) ( x + 1 )
x = -1/3 hoặc x = -1.
\(4x^2+4x+1=x^2\)
\(\Leftrightarrow\left[\left(2x\right)^2+2.2x.1+1^2\right]-x^2=0\)
\(\Leftrightarrow\left(2x+1\right)^2-x^2=0\)
\(\Leftrightarrow\left(2x+1-x\right).\left(2x+1+x\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy nghiệm của phương trình là: \(S=\left\{-1;-\dfrac{1}{3}\right\}\)