\(\dfrac{4x-5}{3}>\dfrac{7-x}{5}\\ \Leftrightarrow\dfrac{\left(4x-5\right)5}{15}>\dfrac{\left(7-x\right)3}{15}\\ \Leftrightarrow20x-25>21-3x\\ \Leftrightarrow20x+3x>21+25\\ \Leftrightarrow23x>46\\ \Leftrightarrow x>2\)
=>5(4x-5)>3(7-x)
=>20x-25>21-3x
=>23x>46
=>x>2
`(4x-5)/(3)>(7-x)/(5)`
`<=>(5.(4x-5))/(3.5) > (3.(7-x))/(5.3)`
`<=>(20x-25)/(15) > (21-3x)/(5.3)`
`<=>20x-25>21-3x`
`<=>20x+3x > 25+2`
`<=>23x>46`
`<=>x>2`
Vậy `x>2`