\(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\4x-12=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=9\\4x=12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=3\end{matrix}\right.\)
Vậy \(S=\left\{\pm3\right\}\)
\(\left(4x-12\right)\left(x^2-9\right)=0\\ \begin{matrix}TH1:4x-12=0\\TH2:x^2-9=0\end{matrix}\)
Xét `TH1`
`4x-12=0`
`4x=12`
`x=3`
Xét `TH2:`
`x^2-9=0`
`x^2=9` ; `x^2=-9`
`x^2=3` ; `x^2=-3`
Vậy `TH1``x=3`
`TH2x=`\(\pm3\)
`@An`