4A. Tính giá trị biểu thức:
a) A = a(b + 3) - b(3 + b) tại a = 2003 và b = 1997;
b) B = b2 - 8b- c(8 - b) tại b = 108 và c = -8;
c) C = xy(x + y) - 2x - 2y tại xy = 8 và x + y = 7;
d) D = x5(x + 2y)-x3y(x + 2y) + x2y2(x + 2y) tại x = 10 và y = -5.
4B. Tính giá trị biểu thức:
a) M = t(10 - 4t) - t2(2t - 5) – 2t + 5 tại t = 5 ;
2
b) N = x2(y - 1) - 5x(1 - y) tại x = -20 và y = 1001;
c) P = y2(x2 + y - 1) - mx2 - my+ m tại x = 9 và y = -80;
d) Q = x(x - y)2 -y(x - y)2 + xy2 - x2y tại x - y = 7 và xy = 9.
4A:
a: \(A=a\left(b+3\right)-b\left(b+3\right)\)
\(=\left(b+3\right)\left(a-b\right)\)
\(=2000\cdot6=12000\)
b: \(B=b^2-8b-c\left(8-b\right)\)
\(=b\left(b-8\right)+c\left(b-8\right)\)
\(=\left(b-8\right)\left(b+c\right)\)
\(=100\cdot100=10000\)
a) \(A=a\left(b+3\right)-b\left(3+b\right)\)
\(=a\left(b+3\right)-b\left(b+3\right)\)
\(=\left(a+b\right)\left(b+3\right)\)
Thay a=2003 và b=1997 ta có:
\(A=\left(2003+1997\right)\left(1997+3\right)\)
\(=4000.2000\)
\(=8000000\)
\(4,\\ A=\left(b+3\right)\left(a-b\right)=\left(1997+3\right)\left(2003-1997\right)\\ A=2000\cdot6=12000\\ B=\left(b-8\right)\left(b+c\right)=\left(108-8\right)\left(108-8\right)\\ B=100\cdot100=10000\\ C=\left(x+y\right)\left(xy-2\right)=7\cdot10=70\\ D=\left(x+2y\right)\left(x^5-x^3y+x^2y^2\right)=\left(10-10\right)\left(x^5-x^3y+x^2y^2\right)=0\)