3x2 + 2y2 + 2xy - 10x - 10y + 15 = 0
<=> 6x2 + 4y2 + 4xy - 20x - 20y + 30 = 0
<=> (4x2 + 4xy + y2) - 10(2x + y) + 25 + (5y2 - 10xy + 5) = 0
<=> (2x + y)2 - 10(2x + y) + 25 + 5(y - 1)2 = 0
<=> (2x + y - 5)2 + 5(y - 1)2 = 0
<=> \(\hept{\begin{cases}2x+y-5=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5-y}{2}\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
\(3x^2+2y^2+2xy-10x-10y+15=0\)
\(\Rightarrow\left(x^2+2xy+y^2-6x-6y+9\right)+\left(2x^2-4x+2\right)+\left(y^2-4y+4\right)=0\)
\(\Rightarrow\left(x+y-3\right)^2+2\left(x-1\right)^2+\left(y-2\right)^2=0\)
mà \(\left(x+y-3\right)^2\ge0\forall x,y\)
\(2\left(x-1\right)^2\ge0\forall x\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\hept{\begin{cases}x+y-3=0\\x-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)