`#3107`
\(\left(3^{2021}+3^{2020}\right)\div3^{2020}\\ =3^{2021}\div3^{2020}+3^{2020}\div3^{2020}\\ =3^{2021-2020}+3^{2020-2020}\\ =3+1=4\)
\(...\dfrac{3^{2021}+3^{2020}}{3^{2020}}\\ =\dfrac{3^{2019}.\left(3^2+3\right)}{3^{2019}.3}\\ =\dfrac{3^2+3}{3}\\ =\dfrac{9+3}{3}\\ =\dfrac{12}{3}\\ =4.\)